
Authorship Analysis: Identifying The

Author of a Program1

Ivan Krsul

The COAST Project

Department of Computer Sciences

Purdue University

West Lafayette, IN 47907{1398

krsul@cs.purdue.edu

May 3, 1994

Technical Report CSD{TR{94{030

1This paper was originally written as a Master's thesis at Purdue University.

Abstract

In this paper we show that it is possible to identify the author of a piece of
software by looking at stylistic characteristics of C source code. We also show
that there exist a set of characteristics within a program that are helpful in
the identi�cation of a programmer, and whose computation can be automated
with a reasonable cost.

There are four areas that bene�t directly from the �ndings we present
herein: the legal community can count on empirical evidence to support
authorship claims, the academic community can count on evidence that sup-
ports authorship claims of students, industry can count on identifying the
author of previously un-identi�able software modules, and real time intru-
sion detection systems can be enhanced to include information regarding the
authorship of all locally compiled programs.

We show that it is possible to identify the author of a piece of software
by collecting and identifying eighty-eight programs for twenty nine students,
sta� and faculty members at Purdue University.

Chapter 1

Introduction.

There are many occasions in which we would like to identify the source of
some piece of software. For example, if after an attack to a system by some
software we are presented with a piece of the software used for the attack,
we might want to identify the source of the software. Typical examples of
such software are Trojan horses1, viruses2, and logic bombs3.

Other typical circumstances will require that we trace the source of a
program. Proof of code re-engineering, resolution of authorship disputes and
proof of authorship in courts are but a few of the more typical examples of
such circumstances. Often, tracing the origins of the source requires that we
identify the author of the program.

This seems at �rst an impossible task, and convincing arguments can be
given about the intractability of this problem. Consider, for example, the
following short list of potential problems with the identi�cation of authors:

1. Given that millions of people write software, it seems unlikely that,
given a piece of software, we will �nd the programmer who wrote it.

2. Software evolves over time. As time passes, programmers vary their
programming habits and their choice of programming languages. The

1Trojan horses are de�ned in [GS92] as programs that appear to have one function but
actually perform another function.

2Viruses are de�ned in [GS92] as programs that modify other programs in a computer,
inserting copies of themselves.

3Logic bombs are de�ned in [GS92] as hidden features in programs that go o� after
certain conditions are met.

1

development of new software engineering methods, the introduction of
formal methods for program veri�cation, and the development of user-
friendly, graphic oriented code processing systems and debuggers all
contribute to making programming a highly dynamic �eld.

3. Software gets reused. In recent years, and with the development of ob-
ject oriented programming methodologies, programmers have come to
depend on reusing large portions of code; similar to the code produced
by the GNU/Free Software Foundation4, much of it is public domain.

Commercially available prototypers, like the Builder Xcessory by In-
tegrated Computer Solutions, Inc., produce thousands of lines of code
that are used to develop Motif interfaces. Similar development tools
are available for hundreds of development platforms.

Similar arguments could be given for �ngerprinting: Fingerprint matching
is an expensive process and it seems unlikely that government agencies will
ever be able to classify every citizen in their lifetime. It is also unlikely that
given a �ngerprint, we will be able to pick from a pool of several million
people the correct person every time.

The identi�cation process in computer software can be made reliable for
a subset of the programmers and programs. Programmers that are involved
in high security projects or programmers that have been known to break the
law are attractive candidates for classi�cation.

1.1 Statement of the Problem.

Authorship analysis in literature has been widely debated for hundreds of
years, and a large body of knowledge has been developed [Dau90]. Author-
ship analysis on computer software, however, is di�erent and more di�cult
than in literature.

Several reasons make this problem di�cult. Authorship analysis in com-
puter software does not have the same stylistic characteristics as authorship
analysis in literature. Furthermore, people reuse code, programs are de-
veloped by teams of programmers, and programs can be altered by code
formatters and pretty printers.

4The Free Software Foundation is a group started by Richard Stallman to embody his
ideas of personal freedom and how software should be produced.

2

Our objective is to classify the programmer and to try to �nd a set of
characteristics that remain constant for a signi�cant portion of the programs
that this programmer might produce. This is analogous to attempting to
�nd characteristics in humans that can be used later to identify a person.

Eye and hair coloring, height, weight, name and voice pattern are but
a few of the characteristics that we use on a day-to-day basis to identify
persons. It is, of course, possible to alter our appearance to match that of
another person. Hence, more elaborate identi�cation techniques like �nger-
printing, retinal scans and DNA prints are also available, but the cost of
gathering and processing this information in large quantities is prohibitively
expensive. Similarly, we would like to �nd the set of characteristics within
a program that will be helpful in the identi�cation of a corresponding pro-
grammer, and whose computation can be automated with a reasonable cost.

What makes us believe that identi�cation of authorship in computer soft-
ware is possible? People work within certain frameworks that repeat them-
selves. They use those things that they are more comfortable with or are
accustomed to.

Programmers are humans. Humans are creatures of habit, and habits
tend to persist. That is why, for example, we have a handwriting style that
is consistent during periods of our life, although the style may vary as we
grow older. Patterns of behavior are all around us.

Likewise for programming, we can ask: which are the programming con-
structs that a programmer uses all the time? These are the habits that will
be more likely entrenched, the things he consistently and constantly does
and that are likely to become ingrained.

1.2 Motivation.

Four basic areas can bene�t considerably by the development of solid author-
ship analysis tools:

1. For authorship disputes, the legal community is in need of solid method-
ologies that can be used to provide empirical evidence to show that two
or more programs are written by the same person.

2. In the academic community, it is considered unethical to copy pro-
gramming assignments. While plagiarism detection can show that two

3

programs are equivalent, authorship analysis can be used to show that
some code fragment was indeed written by the person who claims au-
thorship of it.

3. In industry, where there are large software products that typically run
for years, and millions of lines of code, it is a common occurrence
that authorship information about programs or program fragments is
nonexistent, inaccurate or misleading. Whenever a particular program
module or program needs to be rewritten, the author may need to be
located.

It would be convenient to be able to determine the name of the pro-
grammer who wrote a particular piece of code from a set of several
hundred programmers so he can be located to assist in the upgrade
process.

4. Real-time intrusion detection systems could be enhanced to include
authorship information. Dorothy Denning writes in [Den87] about a
proposed real-time intrusion detection system:

The model is based on the hypothesis that exploitation of a
system's vulnerabilities involves abnormal use of the system;
therefore, security violations could be detected from abnor-
mal patterns of system usage.

Obviously, a programmer signature constructed from the identifying
characteristics of programs constitutes such a pattern. For example,
consider the student who retrieves a copy of a password cracking pro-
gram and compiles it in his university account. Once the compiler
collects the identifying features of the program, the operating system
could immediately recognize the compiling of this program as an ab-
normal event.

Of course we realize that it is theoretically possible for a programmer to
fool or bypass the system by altering his programming methods. The
change would have to be gradual, subtle and ingenious for the system
not to record the change. However, we expect that modifying a user's
pro�le to meet the characteristics of a speci�c program (a password

4

cracking program, for example) will be a di�cult and time consuming
process.

Researchers who seriously consider this issue must also address the re-
design of compilers, interpreters and operating systems to enforce the
use of these metrics at run time. A compiler is just another program.
What is to prevent someone from bringing or building his own compiler
piece by piece?

Operating systems must also prevent the installation of programs com-
piled on other systems by potential penetrators. To maintain consis-
tency, all executable programs in the system must be either compiled
locally, or registered with the system administrator. If this step was
not enforced, any programmer might compile source code on a privately
owned machine, importing executable programs with false identi�ca-
tion information.

We must also consider that the data that authorized compilers generate
must be protected. If such identifying information is stored in the
binary �le, what prevents someone from writing a program to change
it?

1.3 Desired Results

Our goal is to show that it is possible to identify the author of a program by
examining its programming style characteristics. Ultimately, we would like
to �nd a signature for each individual programmer so that at any given point
in time we could identify the ownership of any program.

The implications of being able to �nd such a signature are enormous. Cli�
Stoll's German hacker [Sto90] never feared prosecution precisely because of
our inability to identify him even after tracking him down (the hacker had to
be caught red-handed to be prosecuted). The author of the Internet Worm
that attacked several hundred machines in the evening of November 2, 1988
[Spa89] might also have been identi�ed quickly since he was a student and
many samples of his programming style were readily available. Authors of
computer viruses might also be identi�ed if a piece of the source code is
available.

5

1.4 Summary.

Identifying the author of a program is a di�cult process. We need some
powerful tools to discover the identity of programmers who are not explicitly
named or who might simply wish to conceal themselves. These tools must
prove reliable.

In the remainder of this paper, we will put forth a methodology for iden-
tifying such source code. Chapter 2 introduces much of the background
material and explores the work that has been done in related areas. Chapter
3 introduces the methodology and experimental setup. Chapter 4 details the
experiments performed and outlines the �ndings. Finally, Chapter 5 presents
the conclusions and details the work that must be done in the future.

6

Chapter 2

Authorship Analysis

2.1 De�nitions

An Author is de�ned by Webster [MW92] as \one that writes or composes
a literary work," or as \one who originates or creates." In the context of
software development we adapt the de�nition of author to be: \one that
originates or creates a piece of software." Authorship is then de�ned as,
\the state of being an author." As in literature, a particular work can have
multiple authors. Furthermore, some of these authors can take an existing
work and add things to it, evolving the original creation.

A program is a speci�cation of a computation [Set89] or alternatively,
a sequence of instructions that permit a computer to perform a particular
task [Spe83]. A programming language is a notation for writing programs
[RR83, Set89].

A programmer is a person who designs, writes and tests computer pro-
grams [Spe83]. In the fullest meaning of the term, a programmer will partic-
ipate in the de�nition and speci�cation of the problem itself, as well as the
algorithms to be used in its solution. He will then design the more detailed
structure of the implementation, select a suitable programming language and
related data structures and write and debug the necessary programs [RR83].

Programming style is a distinctive or characteristic manner present in
those programs written by a programmer.

A predicate is a propositional formula in which relational and quanti-
�ed expressions can be used in place of prepositional variables. To interpret

7

a predicate, we �rst interpret each relational and quanti�ed expression|
yielding true and false for each|and then interpret the resulting preposi-
tional formula [And91, page 20].

A complex system may be divided into simpler pieces called modules.
While writing software that is divided into modules, we can: look at the

details of each module in isolation, ignoring other modules until the module
has been tested and completed, or look at the general characteristics of each
module and their relationships to integrate them. If these two phases are
executed in this order, then we say that the system is designed bottom up;
the converse denotes top-down design.

Prototypers are programs that allow users to create automatically large
portions of code, generally for the design of user-interfaces, relieving the user
of the monotonous production of well understood and largely standard code.

2.2 Survey of Related Work

2.2.1 Authorship Analysis in Literature

In literature, the question of Shakespeare's identity has engaged the wits and
energy of a wide range of people for more than two hundred years. Such great
�gures as Mark Twain, Irving Wall and Sigmund Freud debated at length
this particular issue [HH92]. Mark Twain, for example, made the following
observations about Shakespeare and his writings:

� Shakespeare's parents could not read, write or sign names.

� He made a will, signed on each of the three pages. He went to great
lengths to distribute his wealth among the members of his family. This
will was a businessman's will and not a poet's.

� His will does not mention a single book, nor a poem nor any scrap of
manuscript of any kind.

� There is no other known specimen of his penmanship that can be proved
his, except one poem that he wrote to be engraved on his tomb [Nei63].

Hundreds of books and essays have been written on this topic, some as
early as 1837 [Dis37]. Especially interesting was W. Elliott's attempt to

8

resolve the authorship of Shakespeare's work with a computer by examining
literary minutiae from word frequency to punctuation and proclivity to use
clauses and compounds.

For three years, the Shakespeare Clinic of Claremont Colleges used com-
puters to see which of �fty-eight claimed authors of Shakespeare's works
matched Shakespeare's writing style [EV91]. Among the techniques used
was a modal test that divided a text into blocks, �fty-two keywords in each
block, and measured and ranked eigenvalues, or modes. Rather than rep-
resenting keyword occurrences, modes measure patterns of deviation from
a writer's rates of word frequency. Other more conventional tests examined
were hyphenated compound words; relative clauses per thousand; grade-level
of writing; and percentage of open { and feminine { ended lines [EV91].

Although much controversy surrounds the speci�c results obtained by
Elliott's computer analysis, it is clear from the results that Shakespeare �ts
a narrow and distinctive pro�le. As W. Elliot and R. Valenza write in [EV91]:

Our conclusion from the clinic was that Shakespeare �t within
a fairly narrow, distinctive pro�le under our best tests. If his
poems were written by a committee, it was a remarkably consis-
tent committee. If they were written by any of the claimants we
tested, it was a remarkably inconsistent claimant. If they were
written by the Earl of Oxford, he must, after taking the name of
Shakespeare, have undergone several stylistic changes of a type
and magnitude unknown in Shakespeare's accepted works.

2.2.2 Authorship Analysis With Programming Style

The issue of identifying program authorship was explored by Cook and Oman
in [OC89] as a means for determining instances of software theft and plagia-
rism. They brie
y explored the use of software complexity metrics to de�ne a
relationship between programs and programmers, concluding that these are
inadequate measures of stylistic factors and domain attributes. Two other
studies by Berghel and Sallach [BS84] and Evangelist [Eva84] support this
theory.

Cook and Oman describe the use of \markers" to describe the occurrences
of certain peculiar characteristics, much like the markers used to resolve

9

authorship disputes of written works. The markers used in their work are
based purely on typographic characteristics.

For collecting data to support their claim they built a Pascal source code
analyzer that generated an array of Boolean measurements based on:

1. Inline comments on the same line as source code.

2. Blocked comments (two or more comments occurring together).

3. Bordered comments (set o� by repetitive characters).

4. Keywords followed by comments.

5. One or two space indentation occurred more frequently.

6. Three or four space indentation occurred more frequently.

7. Five spaces or greater indentation occurred more frequently.

8. Lower case characters only (all source code).

9. Upper case characters only (all source code).

10. Case used to distinguish between keywords and identi�ers.

11. Underscore used in identi�ers.

12. BEGIN followed by a statement on the same line.

13. THEN followed by a statement on the same line.

14. Multiple statements per line.

15. Blank lines in program body

To test their hypothesis, Cook and Oman collected the metrics mentioned
above for eighteen short programs by six authors, each program implementing
a simple textbook algorithm that �t on one page.

The programs were taken from example code for three tree traversal al-
gorithms (inorder traversal, preorder traversal and postorder traversal) and
one sorting algorithm (bubble sort).

10

Cook and Oman claim that the results of the experiment were surpris-
ingly accurate. The results are encouraging, but further re
ection shows
that the experiment is fundamentally
awed. This experiment fails to con-
sider that textbook algorithms are frequently cleaned by code beauti�ers
and pretty printers, and that di�erent problem domains will demand dif-
ferent programming methodologies. The implementation of the three tree
traversal algorithms involves only slight modi�cations and hence are likely
to be similar.

Their choice of metrics also limits the usefulness of their techniques. Some
of these metrics are useless in the analysis of C code because the language is
case sensitive and it is a common occurrence that programmers use uppercase
for constants and lowercase for variables and identi�ers.

A Boolean measurement is inadequate for most of the other measure-
ments. Consider, for example, the metric dealing with the existence of blank
lines in a program. Most programmers tend to organize their programs so
that some structural information is readily available by simply looking at the
program. Programmers then tend to spread their code, using blank lines to
separate logically independent blocks. Hence, it is likely that all programs
would have at least some blank lines separating their logical components.

To test our theory, we constructed a simple program that counts the blank
lines in a program and used this tool on 996 C �les. The smallest program
(or �le) was only two lines long. The largest 6,900 lines long. Table 2.1
contains the statistics gathered. Notice how the distribution of percentages
of blank lines is clustered around the ten percent mark. Figure 2.1 shows a
graphical representation of this distribution.

Of these, only four programs had no blank lines, and these four �les
were shorter than six lines of code. The rest varied signi�cantly, from only
one blank line to 36% of the �le being blank lines. Hence, we conclude
that the choice of a Boolean variable for this measurement is inappropriate.
Similar arguments can be made for the \Keywords followed by comments,"
and \Multiple statements per line" measurements.

We also analyzed 178 C �les for indentation information. The smallest
program (or �le) was a few dozen lines. The largest 6,900 lines long. Figure
2.2 shows the distribution of mean indentation values. Figure 2.3 shows the
distribution of maximum indentations for a program.

Not surprisingly, most of the programs analyzed have their indentations
in the two, four and eight spaces marks. What was surprising was the large

11

Percent blank lines Files Smallest �le Largest �le

0 4 2 5
1 4 100 1037
2 3 100 797
3 14 31 1047
4 27 25 1461
5 36 58 6009
6 83 18 3617
7 112 27 2050
8 122 12 3297
9 105 34 2718
10 104 29 2151
11 91 27 2794
12 82 25 5801
13 59 16 1706
14 35 22 1642
15 24 13 719
16 20 19 963
17 12 12 1685
18 22 11 3265
19 6 21 680
20 7 20 92
21 5 29 238
22 3 32 146
23 3 31 212
24 2 38 216
26 4 27 2235
27 1 77 77
28 1 25 25
30 1 23 23
33 2 3 18
36 1 22 22

Table 2.1: Blank Line Count for C Programs

12

N
um

be
r

of
 P

ro
gr

am
s

Percentage of Blank Lines

0.00

20.00

40.00

60.00

80.00

100.00

120.00

0.00 10.00 20.00 30.00

Figure 2.1: Blank Line Distribution in C Programs

variation found. Some programs were overwhelmingly inconsistent, allowing
for lines to be indented up to 16 spaces. A better indentation measurement
must include a consistency value.

2.2.3 Software Forensics

Spa�ord and Weeber suggest that it might be feasible to analyze the remnants
of software, typically the remains of a virus or trojan horse, and identify its
author. They theorize that this technique, called Software Forensics, could
be used to examine and analyze software in any form; be it source code for
any language or executable images [WS93].

The authorship of a program might well be proven beyond any reasonable
doubt by the results of such analysis if there exists a large enough statistical

13

N
um

be
r

of
 P

ro
gr

am
s

Average Indentation on Program

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

2 4 6 8

Figure 2.2: Mean Indentation for C Programs

base to support our comparisons. If not, they might provide hints about
where more serious investigation should be performed.

An author of software cannot be directly identi�ed by the analysis of
source code, much in the same manner as medical forensics cannot directly
identify the author of a crime. The result of the analysis will be a series
of statistics about the characteristics that are present in the piece of code,
much like the autopsy of a murder showing that the victim was stabbed by
a 20 inch long knife by a left handed criminal six feet tall.

Spa�ord and Weeber write in [WS93] the following of software forensics:

\...would be similar to the use of handwriting analysis by law en-
forcement o�cials to identify the authors of documents involved
in crimes, or to provide con�rmation of the role of a suspect.
Handwriting analysis involves identifying features of the writing
in question. A feature of the writing can be anything identi�able
about the writing, such as the way the i's are dotted or aver-

14

N
um

be
r

of
 P

ro
gr

am
s

Maximum Indentation

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

5 10 15

Figure 2.3: Maximum Indentation for C Programs

age height of the characters. The features useful in handwriting
analysis are the writer-speci�c features. A feature is said to be
writer-speci�c if it shows only small variations in the writings of
an individual and large variations in the writings of di�erent au-
thors.
Features considered in handwriting analysis today include shape
of dots, proportions of lengths, shape of loops, horizontal and
vertical expansion of writing, slant, regularity, and
uency. Most
features in handwriting are ordinary. However, most writing will
also contain features that set it apart from the samples of other
authors, features that to some degree are unusual. A sample that
contains i's dotted with a single dot probably will not yield much
information from that feature. However, if all of the o's in the
sample have their centers �lled in, that feature may identify the
author."

15

This has a high degree of correlation with the identi�cation of program
authors using style analysis [OC89]. However, Software Forensics is really
a superset of authorship analysis using style analysis because some of the
measurements suggested by Spa�ord and Weeber [WS93] include, but are
not limited to, some of the measurements made by Cook and Oman [OC89].

Among the measurements that Spa�ord and Weeber suggest are the pref-
erence for certain data structures and algorithms, the compiler used, the level
of expertise of the author of a program, the choice of system calls made by
the programmer, the formatting of the code, the use of pragmas of macros
that might not be available on every system, the commenting style used by
the programmer, variable naming convention used and misspelling of words
inside comments and variables.

The list of measurements suggested by Spa�ord and Weeber is compre-
hensive, but the derivation of some of these are di�cult to automate. Con-
sider, for example, what they say about spelling and grammarmeasurements:

Many programmers have di�culty writing correct prose. Mis-
spelled variable names (e.g. TransactoingReciept) and words in-
side comments may be quite telling if the misspelling is consis-
tent. Likewise, small grammatical mistakes inside comments or
print statements, such as misuse or overuse of em-dashes and
semicolons might provide a small, additional point of similarity
between two programs.

From a small set of programs, we gathered the names of variable names
and found, among others, that the following were not recognized by the
local spell checker: talk w oracle, om recv, oracle mssg, collis service, re-
sult recv, result send, net colls, tcpchksum, pip, sec host, info my socket,
msgc, remdata, CharToInputType, StateToNextState, NoOutputChars, Er-
rorType, proto, addrlen, hname.

We also extracted all the comments and strings from several programs of
a graduate student of Purdue University and found that the following words,
among others, were not recognized by our local spell checker: algo, buf,
cmd, cmdAckGet, cmdAckPut, cmdClr, cmdEnd, cmdErr, cmdGet, cmdPut,
co, connectsock, cont, corrida, Entrando, Esto, Expiro, llego, mandando,
respuesta, resultado, tiempo, tion, ver.

Even when we look at the original words in their context, it is practically
impossible to determine when a word was misspelled. Some of the words the

16

spell checker did not recognize are in Spanish. This gives us some information
about the origin or educational background of the programmer 1 and this
adds to the complexity of automating these measurements.

Spa�ord and Weeber provide no statistical evidence that might support
their theory. The following quote from the concluding remarks of the paper
illustrate the point:

Further research into this technique, based on the examination of
large amounts of code, should provide further insight into the util-
ity of what we have proposed. In particular, studies are needed to
determine which characteristics of code are most signi�cant, how
they vary from programmer to programmer, and how best to mea-
sure similarities. Di�erent programming languages and systems
should be studied, to determine environment-speci�c factors that
may in
uence comparisons. And most important, studies should
be conducted to determine the accuracy of this method; false neg-
atives can be tolerated, but false positives would indicate that the
method is not useful for any but the most obvious of cases.

2.3 Di�culties in Authorship Analysis

We expect the programming characteristics of programmers to change and
evolve. For example, it would be unrealistic for us to expect the programming
style of a programmer to remain unaltered through several years of graduate
work in Computer Science.

Education is only one of many factors that have an e�ect on the evolution
of programming styles. Not only do software engineering models impose
particular naming conventions, parameter passing methods and commenting
styles; they also impose a planning and development strategy. The waterfall
model [GJM91], for example, encourages the design of precise speci�cations,
utilization of program modules and extensive module testing. These have a
marked impact on programming style.

The programming style of any given programmer varies also from lan-
guage to language, or because of external constraints placed by managers or

1Some of these words may be in Spanish, or they might be simple contractions. The
words ver and algo fall under this category

17

tools2. Out of the set of measurements that allow our model to identify the
authorship of a program, can we identify those that have been contaminated
and ignore them for our analysis? A good example would be the analysis of
code that has been formatted using a pretty-printer. Would it be possible for
the authorship analysis system to recognize that such a formatter has been
used, identify the pretty-printer and compensate by eliminating information
about indentation, curly bracket placement and comment placement? Con-
ceptually similar would be the recognition of tools used that force onto the
programmer a particular programming style. For example, could the author-
ship analysis tool recognize the usage of Motif and compensate for variable
naming conventions imposed by the tool?

Finally, among the most serious problems that must be resolved with
authorship analysis is the reuse of code. All the work performed up to date
on this subject assumes that a signi�cant part of the code being analyzed
was built and developed by a single individual. In commercial development
projects, this is seldomly the case.

2.4 What Authorship Analysis is not

2.4.1 Plagiarism Detection

It is important to realize that authorship analysis is markedly di�erent from
Plagiarism Detection. In [Mor91], D. Moreaux de�ned Software Plagiarism
as a general form of software theft, which can in turn be de�ned as the
complete, partial or modi�ed replication of software, with or without the
permission of the original author.

Notice that according to this de�nition, plagiarism detection can not tell
if two entirely di�erent programs were written by the same person. Also, the
replication need not maintain the programming style of the original software.

Consider, for example, a program \X" that is a plagiarized version, by
programmer \A" of an original work done by programmer \B." After Pro-
grammer \A" has copied the original program, stylistic changes are made.
Speci�cally, old comments are removed and new comments are added, inden-
tation and placement of brackets are changed to match the style of program-

2The use of the Motif, GL, PLOT-10 or GKS libraries generally demands that the
application be structured in some fashion or may impose naming conventions.

18

mer \A," variables are renamed to something that he feels more comfortable
with, the order of functions is altered and \for" loops are changed to \while"
loops.

While plagiarism detection needs to detect the similarity between these
two programs, authorship analysis does not. For the purpose of authorship
identi�cation, these two programs have distinct authors.

Many people have devoted time and resources to the development of
plagiarism detection [Ott77, Gri81, Jan88, Wha86], and a comprehensive
analysis of their work is beyond the scope of this paper. We can, however
give a simple example that will illustrate how measurements traditionally
used for plagiarism detection are ill suited to authorship analysis.

Consider the two functions shown in �gure 2.4. Both are structurally and
logically equivalent. However, the second function has undergone several
stylistic changes that mask the identity of the original programmer. Plagia-
rism detection systems might consider them identical. Traditional software
engineering metrics, used commonly for plagiarism detection, will yield sim-
ilar values. But authorship analysis should not consider them identical. If
both authors happen to write these functions independently, and this is a
common occurrence, our system should identify them as unique.

2.4.2 Personality Pro�ler

Throughout the development of this document, we realized that it is a com-
mon occurrence to mistake authorship analysis with the classi�cation of pro-
grammers personalities. A member of the faculty of Purdue University re-
marked that it would be ridiculous to try to derive any information about
his persona by the programming examples in his many published books or
developed systems. While this might be possible, it should be left to the
researchers in psychology departments.

We also believe that it is possible to determine something about the back-
ground of a programmer by looking at his code [WS93]. Faculty members and
teaching assistants at Purdue University agree that undergraduate students
and electrical engineers are notorious for abusing3 hashing, Lisp programmers

3Abuse in this context refers to using a data structure that is inappropriate or unrea-
sonably expensive. Sorting with linked lists or hashing techniques where keys have a high
degree of collisions are examples of such abuses.

19

are notorious for abusing linked-list data structures, and native Fortran pro-
grammers prefer using short lines. While all this information might be useful
in forensic analysis [WS93], it is beyond the scope of our study.

2.5 A Simple Example

As a simple example of the di�erences in programming style among program-
mers, consider the programs shown in �gures 2.5, 2.6, 2.7 and 2.8. These are
variations on a program written by graduate students at Purdue University.
The speci�cation given for the function was:

\Write a function that takes three parameters of type pointers to
strings. The function must concatenate the �rst two strings into
the third string. The use of system calls is not permitted."

We notice that the approach taken by all programmers was similar; all
functions work exclusively with pointers, and all loops search for the null
character at the end of each string. Three of the four programs use the
while loop and three of the four programs use auxiliary variables. All four
programs contain two loops and all loops have the same functionality.

However, these programs are far from being identical. A closer scrutiny
of these programs will reveal that:

1. Programmer one prefers the use of \for" loops instead of the \while"
loop.

2. Only programmer two has the function header comments boxed in com-
pletely, programmer one has partial boxing, and the rest have no boxes
at all.

3. Programmers one and three have chosen temporary variables with names
of the form xxx1, xxx2, xxx3, etc. Only programer two has chosen
temporary variable names that re
ect the use that will be given to the
variable.

4. One of the programs has a signi�cant bug: The return of the function
is unde�ned when the two input strings are empty (i.e. it fails to \do
nothing" gracefully [KP78]).

20

5. The program for programmer one has an incorrect comment.

6. Only one of the programmers has consistently indented his programs
using three spaces. The rest used only two spaces.

7. The placement of curly braces (f) is distinct for all programmers.

This is not an exhaustive list of di�erences. It is just an example that
illustrates the types of features that we can examine to distinguish among
programmers.

21

/**
 * Subroutine for checking a string for TABS
 * Parameters: s1:String to examine
 * Return: Boolean indicating the existence
 * of a tab character
 **/
int strchk(char *s1)
{
 char *ptr1;

 ptr1 = s1;
 while(*ptr1 != 0)
 if(*ptr1++ == ’\t’)
 return(1);
 return(0);
}

#define TRUE 1
#define FALSE 0
/* Checks the existence of \t in string */
int check_for_tab_in_string(string)
char *string;
{
 char *character_pointer;

 /* Loop until found or we reach EOLN */
 for(character_pointer = string;*character_pointer != NULL;)
 {
 /* check to see if we found TAB */
 if(*(character_pointer++) == 9)
 {
 /* Success!! */
 return(TRUE);
 }
 }
 /* No tab */
 return(FALSE);
}

Two program modules that
might be considered similar in
plagiarism detection systems.
They would not be considered
similar in authorship analysis.

Figure 2.4: Plagiarism Detection vs. Authorship Analysis

22

/***
 * This function concatenates the first and second string into
 * the third string.
 ***/
void strcat(char *string1, char *string2, char *string3)
{
 char *ptr1, *ptr2;

 ptr2 = string3;
 /*
 * Copy first string
 */
 for(ptr1=string1;*ptr1;ptr1++) {
 *(ptr2++) = *ptr1;
 }
 /*
 * Copy first string
 */
 for(ptr1=string2;*ptr1;ptr12++) {
 *(ptr2++) = *ptr1;
 }
 /*
 * Null terminate the resulting string
 */
 *ptr2 = ’\0’;
}

Figure 2.5: Style Variations on a Program: Programmer 1

23

/* --- */
/* strcat(s1, s2, s3) */
/* Append strings s1 and s2, and copy result into s3. */
/* Requires that sufficient memory for s3 is already allocated. */
/* --*/

void strcat (s1, s2, s3)
char *s1;
char *s2;
char *s3;
{
 char* src = s1;
 char* dest = s3;

 while (*src) {
 *(dest++) = *(src++);
 };

 src = s2;
 while (*src) {
 *(dest++) = *(src++);
 };

 *dest = ’\0’;
};

Figure 2.6: Style Variations on a Program: Programmer 2

24

/*
 str_cat(char *str1, char *str2, char *str3)
 concatenates string str1 & str2 into str3
 */
void str_cat(char *str1, char *str2, char *str3)
{
 char *aux1,* aux2;

 aux1 = str3;
 aux2 = str1;

 while (*aux2 != 0) /* CIoopy str1 -> str3 */
 {
 *aux1 = *aux2;
 aux1++;
 aux2++;
 }

 aux2 = str2;
 while (*aux2 != 0) /* Append str23 -> str3 */
 {
 *aux1 = *aux2;
 aux1++;
 aux2++;
 }
 /* End str3 with a null character */
 *aux1 = 0;
}

Figure 2.7: Style Variations on a Program: Programmer 3

/*
 * concatenate s2 to s1 into s3.
 * Enough memory for s3 must already be allocated. No checks !!!!!!
 */

mysc(s1, s2, s3)
 char *s1, *s2, *s3;
{
 while (*s1)
 *s3++ = *s1++;

 while (*s2)
 *s3++ = *s2++;
}

Figure 2.8: Style Variations on a Program: Programmer 4

25

Chapter 3

Experimental Setup

We understand that analysis of source code can be performed at many levels.
Because programmers solve problems with regular patterns, we could analyze
the semantic structure of the code to �nd repeating patterns and structures.
For example, the actions that might be taken on the discovery that some
fatal error has occurred might vary considerably from program to program
and from programmer to programmer.

Formal methods for de�ning the semantics, or connotative meaning, of
programs and programming languages, such as axiomatic semantics1 and
denotational semantics [All86, Set89, Hoa69], could be used to search for
identifying patterns in program logic or semantic structure.

Also, consider a programmer who codes with a top-down approach. Rather
than testing each program module individually, his program must be robust
enough so that when it is time to test the program, errors will be quickly
spotted. In these cases, dynamic error checking might be more frequent than
when each module is tested for correctness using the bottom-up approach.

We can also search for repeating patterns by analyzing the executable
behavior of the program, searching for data
ow patterns, or by looking at
user interfaces, looking for repeating patterns in the look and feel of the
program.

In our particular environment, it is not likely that we will be able to
use these methods. Formal methods like axiomatic semantics are computa-

1Axiomatic Semantics concentrates on the predicates that must hold at every step of
the program, and deriving meaning from those predicates that hold on termination of the
program.

26

tionally expensive and di�cult to automate, and work only for the simplest
programs. Analyzing the executable behavior of a program or analyzing user
interfaces is possible but, as we shall show in this paper, inappropriate for
our environment.

3.1 Choice of Programming Language

In this paper we will limit ourselves to the stylistic concerns of C source code.
Programmers are comfortable using it and the language is commonly used
in the academic community and in industry.

Although theoretically possible, it would be impractical to compare style
metrics across di�erent development platforms. We must place some restric-
tions on what must remain constant for the authorship analysis techniques
described in this document to work.

The programming language to be used for our analysis should remain
the same. Among similar languages like C, Modula and Pascal, the same
metrics might be used successfully with similar results. This might not be
true if C++ is compared with LISP, 4th Dimension or Prolog.

Consider, for example, the C program shown in �gure 3.2, the Prolog pro-
gram shown in �gure 3.1 and the Emacs-LISP program shown in �gure 3.3.
These programs belong to three di�erent programming paradigms (Struc-
tured Programming, Logic Programming and Functional Programming) and
there are large di�erences among them. Many of the metrics we could use
for identifying authorship in one of these programming languages will be of
no use in the others.

3.2 De�nition of Software Metrics

The term \Software Metric" was de�ned by Conte, Dunsmore and Shen in
[SCS86] as:

Software metrics are used to characterize the essential features
for software quantitatively, so that classi�cation, comparison, and
mathematical analysis can be applied.

What we are trying to measure, for establishing the authorship of a pro-
gram, are precisely some of these features. Hence, the term software metric,

27

apply(eq , ArgVal , Env , Result) :-
 ArgVal=[FstArg,ScnArg],
 number(FstArg),number(ScnArg),
 FstArg=ScnArg,Result=t,!.
apply(eq , Arg , Env , Result) :-
 Arg=[A1,A2],A1=[quote,X],A2=[quote,Y],
 atom(X),atom(Y),X=Y,
 apply(eq,[X,Y],Env,Result),!.
apply(eq , Arg , Env , Result) :-
 Arg=[A1,A2],
 not(number(A1)),not(number(A2)),
 eval(A1,Env,P1),eval(A2,Env,P2),
 apply(eq , [P1,P2] ,Env ,Result),!.
apply(eq , ArgVal , Env , Result) :-
 ArgVal=[FstArg,ScndArg],
 FstArg=[cons,A1,A2],ScndArg=[cons,B1,B2] ,
 apply(eq , [A1,A2], Env, R1),R1=t,
 apply(eq , [B1,B2], Env, Result),!.
apply(eq , ArgVal , Env , Result) :-
 ArgVal=[FstArg,ScndArg],
 FstArg=[H1|T1],ScndArg=[H2|T2],
 apply(eq , [H1,H2],Env, R1),R1=t,
 append(T1, T2, NewArg),
 apply(eq , NewArg ,Env, Result),!.

Figure 3.1: Fragment of a Prolog Program

or simply metric, is more appropriate to describe these special characteris-
tics than the term \marker" used by Cook and Oman in [OC89] or the term
\identifying feature" used by Spa�ord and Weeber [WS93].

3.3 Sources for the Collection of Metrics

We can collect metrics for authorship detection from a wide variety of sources:

� Oman and Cook [OC91] collected a list of 236 style rules that can be
used as a base for extracting metrics dealing with programming style.

� Conte, Dunsmore and Shen [SCS86] give a comprehensive list of soft-
ware complexity metrics.

� Kernighan and Plauger [KP78] give over seventy programming rules
that should be part of \good" programming practice.

28

main()
{
 char i,j;
 fifo_buffer<char> *buf;

 buf = new fifo_buffer<char>();
 for(i=0;i<MAX_BUFFER_LEN;i++) {
 if(!buf->enter_buffer(’A’+i))
 printf("Error: Buffer should not be full!\n");
 if(buf->enter_buffer(’A’+10))
 printf("Error: Buffer should be full!\n");
 for(i=0;i<5;i++) {
 if(!buf->leave_buffer(&j))
 printf("Error: Buffer should not be empty!\n");
 else
 printf("(%c) ",j);
 }
 }
}

Figure 3.2: Fragment of a C Program

� D. Van Tassel [Tas78] devotes a chapter to programming style for im-
proving the readability of programs.

� Jay Ranade and Alan Nash [RN93] give more than three hundred pages
of style rules speci�cally for the \C" programming language.

� Henry Ledgard gives a comprehensive list of \C" programming proverbs
that contribute to programming excellence [Led87].

Many other sources have in
uenced our choice of metrics [LC90, BB89,
OC90b, Coo87] but do not contain a speci�c set of rules, metrics or proverbs.

3.4 Software Metrics Categories

All these sources give us ample material to select the metrics we will use.
However, because of the large number of rules and metrics available, we have
decided to divide our metrics into three categories.

Programming style, as shown by example by Kernighan and Plauger
[KP78], Oman and Cook [OC90a] and Ranade and Nash [RN93], is a broad

29

;
; miscellaneous short RCS commands
;
(defun rcs-rlog-file ()
 "Run rlog on this file."
 (interactive)
 (setq this-file (if (dired-mode-p) (dired-get-filename) (buffer-file-name)))
 (message "rlog %s ..." (file-name-nondirectory this-file))
 (sit-for 0)
 (shell-command (concat "rlog " this-file) nil)
 (message "rlog %s ... done" (file-name-nondirectory this-file)))

(defun rcs-diff-file (arg)
 "Run rcsdiff on this file with optional revision"
 (interactive "p")
 (setq this-file (if (dired-mode-p) (dired-get-filename) (buffer-file-name)))
 (setq rcs-diff-rev (rcs-get-revision arg))
 (message "rcsdiff -r%s %s ..." rcs-diff-rev
 (file-name-nondirectory this-file))
 (sit-for 0)
 (shell-command (concat "rcsdiff -r" rcs-diff-rev " " this-file) nil)
 (message "rcsdiff -r%s %s ... done" rcs-diff-rev
 (file-name-nondirectory this-file)))

Figure 3.3: Fragment of a Lisp Program

term that encompasses a much greater universe than the one we have chosen
in this paper. Programming style generally considers all our three categories.

3.4.1 Programming Layout Metrics

We would like to examine those metrics that deal speci�cally with the layout
of the program. In this category we will include such metrics as the ones
that measure indentation, placement of comments, placement of brackets,
etc. We will call these metrics \Programming Layout" metrics.

All these metrics are fragile because the information required can be easily
changed using code formatters and pretty printers. Also, the choice of editor
can signi�cantly change some of the metrics of this type. Emacs, for example,
encourages consistent indentation and curly bracket placement.

Furthermore, many programmers learn their �rst programming language
in university courses that impose a rigid and speci�c set of style rules regard-
ing indentations, placement of comments and the alike [MB93].

30

3.4.2 Programming Style Metrics

Also useful are the metrics that deal with characteristics that are di�cult to
change automatically by pretty printers and code formatters, and are also
related to the layout of the code. In this category we include those metrics
that measure mean variable length, mean comment length, etc. We will call
these metrics \Programming Style" metrics.

3.4.3 Programming Structure Metrics

Finally, we would like to examine metrics that we hypothesize are depen-
dent on the programming experience and ability of the programmer. In this
category we will �nd such metrics as mean lines of code per function, usage
of data structures, etc. We will call these metrics \Programming Structure"
metrics,

3.5 Metrics Considered

From all the sources mentioned in Section 3.3, we extracted a series of po-
tentially useful software metrics. Even though we describe these metrics as
indivisible measurements, in practice we might calculate several values for
them. For example, for metric STY1a we might calculate a median and a
standard error. We will examine the exact format in greater detail in later
sections.

Also, unless explicitly stated, all the metrics consider only the text inside
function bodies. We don not examine include �les or type declarations be-
cause there is no way of di�erentiating between those declarations that are
imported from external modules, and those that are native to the program-
mer.

3.5.1 Programming Layout Metrics

� Metric STY1: A vector of metrics indicating indentation style [RN93,
pages 68{69]. For example, consider the styles shown in �gure 3.4. Our
metrics should distinguish among them.

This vector of metrics will be composed of:

31

if(a==b) {
 b = 1;
}

if(a==b)
 {b =1;
 }

if(a==b)
{
 b = 1;
}

if(a==b) { b = 1;
}

if(a==b) {
 b = 1;
 }

if(a==b) { b = 1;)

Figure 3.4: Indentation Styles and Placement of Brackets

{ Metric STY1a: Indentation of C statements within surrounding
blocks.

{ Metric STY1b: Percentage of open curly brackets (f) that are
alone in a line.

{ Metric STY1c: Percentage of open curly brackets (f) that are the
�rst character in a line.

{ Metric STY1d: Percentage of open curly brackets (f) that are the
last character in a line.

{ Metric STY1e: Percentage of close curly brackets (g) that are
alone in a line.

{ Metric STY1f: Percentage of close curly brackets (g) that are the
�rst character on a line.

{ Metric STY1g: Percentage of close curly brackets (g) that are the
last character in a line.

{ Metric STY1h: Indentation of open curly brackets (f).

{ Metric STY1i: Indentation of close curly brackets (f).

32

These metrics must only be calculated inside functions, ignoring state-
ments and curly brackets outside them. The formatting of data struc-
ture declarations and macro de�nitions might not represent the pro-
grammer's programming style. Also, there is no automatic method for
di�erentiating those declarations and de�nitions that were created by
the user and those that are simply exported from outside modules.

� Metric STY2: Indentation of statements starting with the \else" key-
word.

� Metric STY3: In variable declarations, are variable names indented to
a �xed column? Figure 3.5 shows an example of variables that are
indented to a �xed column.

main()
{
 int i;
 char *cptr;
 static float number;
 short int j;
 .
 .
 .
}

main()
{
 int i;
 char *cptr;
 static float number;
 short int j
 .
 .
 .
}

Un-indented variable declarations Indented variable declarations

Figure 3.5: Variables Indented to a Fixed Column

� Metric STY4: What is the separator between the function names and
the parameter lists in function declarations? Possible values are spaces,
carriage returns or none.

� Metric STY5: What is the separator between the function return type
and the function name in function declarations? Possible values are
spaces or carriage returns.

33

� Metric STY6: A vector of metrics that will help identify the comment-
ing style used by the programmer. The vector will be composed of:

{ Metric STY6a: Use of borders to highlight comments.

{ Metric STY6b: Percentage of lines of code with inline comments.

{ Metric STY6c: Ratio of lines of block style comments to lines of
code.

� Metric STY7: Ratio of white lines to lines of code [RN93, pages 70{71].

3.5.2 Programming Style Metrics

� Metric PRO1: Mean program line length (characters per line) [BM85].

� Metric PRO2: A vector of metrics that will consider name lengths.

{ Metric PRO2a: Mean local variable name length.

{ Metric PRO2b: Mean global variable name length.

{ Metric PRO2c: Mean function name length.

{ Metric PRO2d: Mean function parameter length.

� Metric PRO3: A vector of metrics that will tell us about the naming
conventions chosen by the programmer. This vector will consist of:

{ Metric PRO3a: Some names use the underscore character.

{ Metric PRO3b: Use of temporary variables2 that are named XXX1,
XXX2, etc. [KP78], or \tmp," \temp," \tmpXXX" or \tem-
pXXX" [RN93].

{ Metric PRO3c: Percentage of variable names that start with an
uppercase letter.

2It can be argued that all local variables are temporary and no global variable is tem-
porary. However, in this paper we will follow the convention that a variable is temporary
if it there is no direct association between its name and its semantic meaning.

34

{ Metric PRO3d: Percentage of function names that start with an
uppercase letter.

� Metric PRO4: Global variable count to mean local variable count ratio.
This metric could potentially tell us something about the programmer's
propensity to use global variables.

� Metric PRO5: Global variable count to lines of code ratio. This varia-
tion of the previous metric might give us a better metric for measuring
the frequency of usage of global variables.

� Metric PRO6: Use of conditional compilation. Here we would specif-
ically search for the \#ifdef" keyword at the beginning of code lines.

� Metric PRO7: Preference of either \while," \for" or \do" loops. All
three can be used for the same purposes [KR85].

� Metric PRO8: Does the programmer use comments that are nearly an
echo of the code [KP78, page 143] [RN93, page 82]?

� Metric PRO9: Type of function parameter declaration. Does the user
use the standard format or the ANSI C format? This metric is only
signi�cant if the user has access to an ANSI C compiler.

3.5.3 Programming Structure Metrics

� Metric PSM1: Percentage of \int" function de�nitions.

� Metric PSM2: Percentage of \void" function de�nitions.

� Metric PSM3: Program uses a debugging symbol or keyword3. We
would speci�cally be looking at identi�ers or constants containing the
words \debug" or \dbg" [RN93, pages38{53]. Figure 3.6 shows three
common debugging styles in C.

3Debugging is di�cult. Many non standard techniques have been developed [RN93],
and we cannot hope to identify all forms of debugging symbols. However, there are some
techniques that are widely used and we will concentrate on these.

35

#define DBG(x) printf(x)

main() {
 DBG("main\n");
 Parse_Input();
 DBG("Finished\n");
}

#define DEBUG 1

main() {
#ifdef DEBUG
 printf("main\n");
#endif
 Parse_Input();
#ifdef DEBUG
 DEBUG("Finished\n");
#endif
}

main(argc, argv)
int argc;
char *argv[];
{
 if(strcmp(argv[1] == 0)
 debug = 1;
 else
 debug = 0;
 if(debug) printf("main\n");
 Parse_Input();
 if(debug) printf("Finished\n");
}

Figure 3.6: Examples of Debugging Styles

� Metric PSM4: The assert macro is used.

� Metric PSM5: Lines of code per function [KP78, BM85].

� Metric PSM6: Variable count to lines of code ratio. This metric could
identify those programmers who tend to avoid reusing variables, creat-
ing new variables for each loop control variable, etc. Alternatively, it
could also help identify di�erences such as

root = (-1 * b + sqrt (b*b - 4*a*c)) / (2*a)

versus

left = -1 * b

right = b*b - 4*a*c

sqright = sqrt (right)

bottom = 2*a

root = (left + sqright) / bottom

in which the second programmer has taken 5 lines of code to do what
the �rst programmer did in 1 line of code.

36

We can de�ne variable count by either looking at each of the statements
and counting variables as they are used, or simply by looking at the
variable declarations and counting the number of variables declared.
The former ignores variables declared and not used and includes global
variables. The latter counts all local variables declared and ignores
global variables. We have chosen to gather our variable counts by
looking at the declarations, ignoring global variables. This allows us
to ignore in our calculations those global variables that are imported
from external modules like Motif and GKS.

� Metric PSM7: Percentage of global variables that are declared static.

� Metric PSM8: The ratio of decision count to lines of code. To simplify
the computation of this metric, we have chosen to modify the de�nition
of decision count as given in [SCS86]. We do not count each logical
operator inside a test as a separate decision. Rather, each instance of
the if, for, while, do, case statements and the ? operator increases our
decision count by one.

� Metric PSM9: Is the goto keyword used? Surprisingly, software design-
ers and programmers still rely on these [BM85].

� Metric PSM10: Simple software complexity metrics o�er little infor-
mation that might be application independent [OC89]. The metrics
that we could consider are: cyclomatic complexity number, program
volume, complexity of data structures used, mean live variables per
statement, and mean variable span [SCS86].

� Metric PSM11: Error detection after system calls that rarely fail. Some
programmers tend to ignore the error return values of system calls that
are considered reliable [GS92, page 164]. Thus, a metric can be ob-
tained out of the percentage of reliable system calls whose error codes
are ignored by the programmer. Also, some programmers tend to over-
look the error codes returned by system calls that should never have
them ignored (like \malloc"). We can de�ne this metric as a vector of
the following items:

{ Metric PSM11a: Are error results from memory related system

37

calls ignored? Speci�cally, we would be looking at malloc(), cal-
loc(), realloc(), memalign(), valloc(), alloca() and free().

{ Metric PSM11b: Are error results from I/O routines ignored?
Speci�cally, we would be looking at open(), close(), dup(), lseek(),
read(), write(), fopen(), fclose(), fwrite(), fread(), fseek(), getc(),
putc(), gets(), puts(), printf() and scanf().

{ Metric PSM11c: Are error results from other system calls ignored?
We would be looking at chdir(), mkdir(), unlink(), socket(), etc.

� Metric PSM12: Does the programmer rely on the internal representa-
tion of data objects? This metric would check for programmers relying
on the size and byte order of integers, the size of
oats, etc.

� Metric PSM13: Do functions do \nothing" successfully? Kernighan
and Plauger in [KP78, pages 111{114] and Jay Ranade and Alan Nash
in [RN93, page 32] emphasize the need to make sure that there are
no unexpected side e�ects in functions when these must \do nothing."
In this context, functions that \do nothing" successfully are functions
that correctly test for boundary conditions on their input parameters.

Consider the case of the function in �gure 2.8 where the program has
that type of bug. The result of the program is unde�ned when both
input strings are empty.

However, we must note that it is an undecidable problem to determine
the correctness of an arbitrary function[HU79].

� Metric PSM14: Do comments and code agree? Kernighan and Plauger
write in [KP78] that \A comment is of zero (or negative) value if it
is wrong". Ranade and Nash [RN93, page 89] devote a rule to the
truth of every comment. Even if the comments were initially accu-
rate, it is possible that during the maintenance cycle of a program they
became inaccurate. Because we cannot determine the stage of devel-
opment where the incorrect comment was introduced, we will consider
all incorrect comments4 in this metric.

4Deciding that a comment is wrong can only be done manually by careful examination
of the source code. Because it involves the semantic analysis of English sentences, it is
unlikely that this process will be automated soon.

38

� Metric PSM15: More than any other type of software metric, those that
deal with the development phase of a project would help to identify the
authorship of a program. Consider, for example, whether comments are
placed before, during or after the development of a program, the choice
of editor, the choice of compiler, the usage of revision control systems,
the usage of development tools, etc. Unfortunately, this information is
not readily available. Test programs, intermediate versions, debugging
code and the alike are discarded after the �nal version of the program
is �nished.

� Metric PSM16: Quality of software. We could use software metrics
that deal with the quality of software to assess the level of experience
of the programmer. Typically, software quality metrics are related to
software development standards and try to measure the reliability and
robustness of software.

These metrics will not be useful. In the worst case, we would be mea-
suring the care that the programmer has taken to develop a piece of
code as well as the level of expertise of the programmer. Furthermore,
it is possible for an experienced programmer to get low software quality
scores and for a beginner to get high scores (if he followed a textbook
algorithm for his program).

3.6 Computation of Metrics

To �nd the most accurate metrics we need a series of tools that can collect
the subset of metrics mentioned in Section 3.5. Because the tools available
calculate only software complexity metrics, we developed a series of pro-
grams designed speci�cally for our purpose and ran them through a series of
controlled experiments.

3.6.1 C Source Code Analyzer

Although languages such as Awk can be used for extracting all the necessary
metrics [BM85], we avoided the Awk and Perl[WS90] programming languages
for calculating most of the metrics dealing with programming structure be-
cause existing tools in compiler construction make it easier to write C code,

39

and our programs bene�t from the reuse of code that was already tested.
At the heart of the software tools is a software analyzer built for the lcc

C compiler front-end developed by David R. Hanson of the University of
Princeton [Han91]. An early version of the software analyzer was written by
Goran Larsson. This software analyzer collects whatever information it can
from the program being analyzed after it passed through the C preprocessor
(cpp) and produces an auxiliary list of semantic indentation levels used by
other programs; mainly by those programs that calculate metrics regarding
indentation.

This list of semantic indentation levels is needed because some C con-
structs are indented by users following rules di�erent to what the compiler
expects. For example, consider the programs in �gure 3.7. The semantic in-
dentation generated are the indentation levels according to the compiler. A
separate program will later produce from these levels the correct indentation
information corresponding to the program as viewed by the user.

3.6.2 Lexical Analyzers

Once the calculation of the programming structure metrics using the modi�ed
version of the lcc C compiler have been performed, a series of Perl programs
are used to collect the metrics that depend on the information that was
discarded by the C preprocessor. Indentation, commenting style and line
lengths are examples of the measurements collected by these scripts.

3.6.3 Statistics Collection

Because the information produced by the above mentioned programs is de-
tailed and numerous, we need a separate series of Perl programs to collect
this data, summarize it and generate the statistics mentioned herein. These
programs will also generate the formatted data necessary to run statistical
analysis and graphic visualization tools.

3.7 Experimental Stages

The experimental data for this paper was gathered in three distinct stages:
a preliminary stage, a pilot experiment and a full experiment.

40

3.7.1 Preliminary Stage

The �rst stage, or preliminary stage, helped us determine the proper methods
for calculating the metrics and coexisted with the tool development phase.
For this phase we considered the following subset of the metrics de�ned in
Section 3.5.

We considered the following Programming Layout Metrics de�ned in Sec-
tion 3.5.1: mean and standard error for STY1a, STY1b, STY1c, STY1d,
STY1e, STY1f, STY1g, mean and standard error for STY1h, mean and
standard error for STY1i, mean and standard error for STY2, STY3, STY4,
STY5, STY6a, STY6b, STY6c and STY7.

Also considered were the following Programming Style Metrics de�ned in
Section 3.5.2: mean and standard error for PRO1, mean and standard error
for PRO2a, mean and standard error for PRO2b, mean and standard error
for PRO2c, mean and standard error for PRO2d, PRO3a, PRO3b, PRO3c,
PRO3d, PRO4, and PRO5, PRO6, PRO7, PRO8 and PRO9.

Finally, we considered the following Programming Structure Metrics de-
�ned in Section 3.5.3: PSM1, PSM2, PSM3, PSM4, PSM5, PSM6, PSM7,
PSM8, PSM9 and PSM14. We chose to exclude all metrics dealing with soft-
ware complexity (metric PSM10) because there is evidence that these are ill
suited for our purpose [OC89].

Metrics PSM11a and PSM11b were excluded because we cannot guaran-
tee that all programs tested use such system calls and because it is impossible
to detect if the error result of most system calls is being ignored without trac-
ing the execution of the program.

For example, all three program fragments of �gure 3.8 check the result
of the \malloc" system call for a NULL value (the error code). This can be
veri�ed easily for fragment 1. It is more di�cult in segment 2 as we have to
assume that the routine \�ll bu�er" does indeed check for NULL pointers.
However, the veri�cation for fragment 3 is complex. This routine, designed
to append nodes to an existing linked list, checks for NULL values returned
by \malloc" inside the recursive step.

Metric PSM12 was also excluded from our analysis because the notion of
\internal representation of data objects" is not well de�ned and because the
metric cannot be extracted without extensive data
ow analysis. Consider,
for example, the programs shown in �gure 3.9. Detecting that the �rst pro-
gram relies on the internal representation of the character data type (ASCII

41

in this case) is simple. More complex analysis must be performed to detect
that the second example relies on a long integer being 32 bits or longer.

For reasons explained in Section 3.5, we have also chosen to exclude from
our analysis metrics PSM13 and PSM15.

The tool that calculates these metrics was applied to a few programs writ-
ten by graduate students at Purdue University. Other than showing that the
metrics were properly calculated, little information can be extracted from the
results. The programs were of di�erent lengths, addressed problems in di�er-
ent domains and were sometimes developed over several years. Furthermore,
they were not part of a controlled experiment.

3.7.2 Pilot Experiment

To test the metrics chosen in the Preliminary Stage, a pilot experiment was
performed with a small number of programmers, each of whom wrote three
short and simple programs. To determine the e�ect of problem domains on
our analysis, the programs were oriented to the three areas where we thought
we could have the greater variations in style: computationally intensive pro-
grams, I/O intensive programs and data structure intensive programs.

The programmers who volunteered to code these programs were members
of a security seminar that met regularly at Purdue University during the
summer and fall of 1993. The description of the problem, and the resulting
programs were distributed and collected electronically. The descriptions of
these programs were:

Program 1 This program must �ll a one dimensional array (or vector) of
size 1000 with random integer numbers in the range 0-100 and then
perform the following actions:

1. Sort the elements in ascending order. The sorting method is not
important.

2. Compute the sum of the numbers in the array.

3. Compute the median (or mean) of the numbers in the array.

4. Calculate the frequency of each of the 101 digits (i.e. the number
of zeroes in the array, the number of ones in the array, the number
of twos in the array, etc.)

42

5. Print out this information to the screen.

Program 2 The program should store internally the following list:

Age Weight Stretch Muscle Time
17 140 Neck Trapezius 5
17 150 Back Latissimus 6
17 160 Chest Pectorals 7
17 170 Arm Tricep 8
17 180 Side Obliques 9
17 190 Thigh Quadriceps 10
18 140 Neck Trapezius 6
18 150 Back Latissimus 7
18 160 Chest Pectorals 8
18 170 Arm Tricep 9
18 180 Side Obliques 10
18 190 Thigh Quadriceps 11
19 140 Neck Trapezius 7
19 150 Back Latissimus 6
19 160 Chest Pectorals 7
19 170 Arm Tricep 8
19 180 Side Obliques 9
19 190 Thigh Quadriceps 9
20 140 Neck Trapezius 4
20 150 Back Latissimus 6
20 160 Chest Pectorals 8
20 170 Arm Tricep 9
20 180 Side Obliques 10
20 190 Thigh Quadriceps 9

The program should then proceed to give the user a menu with the
following choices:

1.- Enter your name

2.- Enter your weight

3.- Enter your age

43

4.- Check time

5.- Check muscle

6.- Quit

Option 1 enters the name of the user for future reference. Option 2
enters the user's weight (used as index to the table). Option 3 enters
the user's age (used as index to the table). Option 4 prompts the user
for a body \part" (i.e. Neck, Back, Chest, Arm, Side or Thigh) and
prints the time corresponding to the age, weight and body part entered.
Option 5 prompts the user for a body \part" (i.e. Neck, Back, Chest,
Arm, Side or Thigh) and prints the muscle group corresponding to the
body part. All responses from the program should include the name of
the user, his age and weight.

Program 3 The program must read from a �le a series of integer numbers
and print them in reverse order by using an integer stack. The stack
must be implemented using a linked list. You must create routines
for pushing elements into the stack, popping elements from the stack,
creating a stack and deleting a stack. The program must print out the
reverse stack right after every element read. For example, the following
is a sample run:

Read element (1)

Reverse stack is:

1

Read element (2)

Reverse stack is:

2

1

Read element (4)

Reverse stack is:

4

2

1

...

44

3.7.3 Preliminary Analysis

All metrics dealing with global variables were useless in our analysis of the
programs as none of the programs examined made use of such variables. Fur-
thermore, subsequent informal polls and the examination of several hundred
system utilities and archived programs revealed that it was not likely that
many of the programs we would examine in the next stage of our experiment
would make heavy use of global variables. Hence, metrics PRO2b, PRO4,
PRO5 and PSM7 were ignored in subsequent analysis.

Not surprisingly, metric PSM5, lines of code per function, shows large
variations in all our test cases. We do note that this metric appears to be
in direct correlation with the problem domain. Program 3 has low values
for this metric (two of these are the lowest values for the programmer) and
this is to be expected. The routines needed to do the job in this application,
create stack, pop, push and delete stack, are naturally short as can be seen
in [Coo87, pages 374-375] and [NS86, page 100]. Program 2 has the highest
values for this metric, which is logical because this program deals with I/O
and user interaction.

Metrics PSM1 and PSM2 also show large variations. However, for one
programmer it gives useful information: programmer 3 never uses \void"
function de�nitions. All other programmers do. Hence, metric PSM2 might
prove valuable in the future. Metric PSM1 might not be valuable because
it might also be correlated to the domain of the application. Consider, for
example, program 3. Most of the functions required for the program must
use a return type di�erent from \int". Program 2, however, is more likely to
have \int" or \void" function de�nitions.

Surprisingly, metric STY6c, ratio of lines of block style comments to lines
of code, shows large variations, but the magnitude of the numbers observed
remain constant. Hence it is likely that this metric can be reformulated to
consider ranges. (i.e. 0% { 20%, 20% { 30%, etc.) Less variation can be seen
in metric STY6b, and this might prove useful in further analysis.

Because the use of goto statements has been virtually banned from the
academic community [Dij68, SCS86, RN93, Set89], and because faculty mem-
bers oppose their use in programming courses, we have chosen to eliminate
metric PSM9 from further analysis. The probability of �nding these state-
ments in students code at Purdue University is negligible.

Metrics STY1b through STY1g, dealing with placement of curly brackets

45

(fg), are stable. Metric STY1h, however, has proven to be unstable because
it is signi�cant only if the curly bracket is consistently the �rst character
in the line. Similar arguments can be made for metric STY1j. Hence, we
eliminated these metrics from further analysis.

In this experiment, only a small number of small programs were con-
sidered and hence, the statistical base is not large enough to make further
observations and little else can be inferred from the results gathered.

46

main()
{
 int i;

 for(i=0;i<3;i++) {
 if(i == 0)
 statement;
 else if(i == 1)
 statement;
 else if(i == 2)
 statement;
 else
 statement;
 }
}

main()
{
 int i;

 for(i=0;i<3;i++) {
 if(i == 0)
 statement;
 else
 if(i == 1)
 statement;
 else
 if(i == 2)
 statement;
 else
 statement;
 }
}

The user’s perspective
of the indentation of the
"else if" clause.

The compiler’s perspective
of the indentation of the
"else if" clause.

Figure 3.7: Di�erences on Indentation Levels

47

if ((ptr = malloc(sizeof(struct test))) == NULL) {
 fprintf(stderr,"Error allocating memory\n");
}

ptr = malloc(MAX_SIZE);
if(fill_buffer(ptr) == SYSERR)
 panic("Can’t fill buffer!");

int add_to_list(ptr,num)
struct node *ptr;
int num;
{
 struct node *p;

 if(ptr == NULL)
 panic("Null pointer! Panic");
 if(num <= 1)
 return;
 p = malloc(sizeof(struct node));
 ptr->next = p;
 add_to_list(p,num-1);
}

1

2

3

}
}

}
Figure 3.8: Error detection After System Calls - An Example

main() {
 long int i,j;
 for(i=0,j=1;i<32;i++)
 j = j<<1;
}

main() {
 char c;

 c = getchar();
 if((c >= ’A’) && (c <= ’Z’))
 c = c + (’a’ - ’A’);
}

Figure 3.9: Dependency on the Representation of Data Objects

48

Chapter 4

Full Experiment

4.1 Introduction

Once the preliminary experiment showed that the desired set of metrics could
be analyzed, we designed and executed a larger, more formal experiment in
which to test our prototype.

4.2 Experiment Setup

For this experiment, a series of programs were collected from a total of 29
students, sta� and faculty members at Purdue University. The distribution
for the programs are shown in table 4.1.

We included programs from a wide variety of programming styles and
for di�erent problem domains. Roughly one third of the student programs
were programming assignments from a graduate level networking course, one
third of the programs were programming assignments from a graduate level
compilers course and one third of the programs were from miscellaneous
graduate level courses, including data bases, numerical analysis and operating
systems

We collected several hundred programs by undergraduate students, but
almost all were either too small to be useful in our analysis, relied heavily
on tools like LEX and YACC, which our software analyzer rejects because
they do not conform to ANSI C speci�cations, were modi�cations to ex-
isting compilers and operating systems, or provided only one program per

49

Table 4.1: Distribution of Programs for the Complete Experiment

Group Identi�cation Number of Programs

Students 1(Projects for the
Fall 1993 term) 57
Students 2 (Programs developed for
other terms) 6
Pilot 1 (Programs developed by
students for the pilot experiment) 18
Pilot 2 (Programs developed by
experienced programmers for the
pilot experiment) 6
Faculty (Miscellaneous programs
by faculty members) 7
TOTAL 88

programmer.
Of the programs submitted by the faculty members, half are oriented

towards numerical analysis and half oriented towards compiler construction
and software engineering.

4.3 Statistical Model Used for the Analysis

There are two statistical methods that could be used to analyze the metrics
gathered. Cluster analysis, as used by Oman and Cook in [OC89] can only be
used if we discretize the values for our metrics. Unfortunately, it is di�cult
to �nd ranges for each of the metrics that could be used for any group of
programmers without loss of accuracy.

The second statistical analysis method we can use, and the one chosen for
our analysis, is discriminant analysis. This method, described in [SAS, JW88]
is a multivariate technique concerned with separating observations and with
allocating new observations into previously de�ned groups.

50

4.4 Preliminary Analysis and Elimination of

Metrics

Not all metrics calculated proved to be useful in further analysis. As men-
tioned in Section 3.7.2, all metrics dealing with global variables were elimi-
nated because most programs submitted did not use these variables. Like-
wise, those metrics dealing with \goto" statements and \assert" macro use
were eliminated because none of the programs submitted used them.

We want to keep those metrics that show little variation between pro-
grams (for a speci�c programmer) and those metrics that show large varia-
tions among programmers. Unfortunately, analysis of the metrics collected
show that these two criteria are not necessarily correlated.

Initially, we calculated the standard error by programmer for every met-
ric, and eliminated those that showed large variations because they identify
those style characteristics where the programmer is inconsistent.

Surprisingly, most of the metrics that showed large variations among pro-
grammers were eliminated as well. The performance of our statistical analysis
with the remaining metrics was discouraging, with only twenty percent of the
programs being classi�ed correctly.

The step discrimination tool provided by the SAS program [SAS] should
theoretically be capable of eliminating bad metrics from the statistical base.
Unfortunately, this tool was not helpful because it failed to eliminate any of
the metrics from our set.

To resolve this issue, we decided to build a tool that would help us vi-
sualize the metrics collected using Matlab version 4.1. The resulting tool
presented for each continuous metric (i.e. real valued metric) two graphs
that showed the variation of the metric within programs for each program-
mer and the distribution of values for each metric for all programmers.

For each discrete metric (i.e. boolean metrics and set metrics), the tool
produced a graph that showed the consistency of each programmer for each
metric. In these �gures, vertical lines represent a programmer \jumping"
from one value to the next in two consecutive programs. Hence, a good
discrete metric is one that shows variations in values and no \jumps."

With this analysis, we chose a small subset of our metrics for the �nal
statistical analysis. Speci�cally, metrics PRO1M, mean for PRO2a, mean for
PRO2b, mean for PRO2c, PRO3d, PRO5, PSM1, PSM6, mean for STY1a,

51

Table 4.2: Classi�cation by Programmer

Programmer % Classi�ed Programmer % Classi�ed

1 100.00 16 100.00
2 100.00 17 100.00
3 33.00 18 0.00
4 100.00 19 71.00
5 100.00 20 100.00
6 77.00 21 100.00
7 77.00 22 33.00
8 100.00 23 100.00
9 100.00 24 75.00
10 100.00 25 20.00
11 77.00 26 0.00
12 100.00 27 100.00
13 100.00 28 100.00
14 100.00 29 25.00
15 50.00

STY1b, STY1c, STY1d, STY1e, STY1f, mean for STY1i, mean for STY2,
STY6b, STY6c, STY7, PRO8, PSM3, STY4 and STY5.

4.5 Experiment Results

4.5.1 Success Rate

The success rate of our experiment is 73%. This means that of all the pro-
grams analyzed, 73% were correctly assigned to their original programmers.
Individual percentages of correctly classi�ed programs are shown in table 4.2.

When colleagues were shown this table for the �rst time, the �rst ques-
tion asked was: \Are all the programmers that the system identi�ed correctly
100% of the time related? Are the backgrounds of these programmers simi-
lar?" Table 4.3 shows the classi�cation of those programmers whose programs
were always identi�ed. Initially we were surprised to see that the programs

52

for seasoned programmers (programmers 10 and 13), a faculty member (pro-
grammer 16), and graduate students of Computer Science were all mixed in
this category. Also, we notice that:

1. The programs for the faculty member (three programs averaging 300
lines of code each) were developed over several years and address dif-
ferent problem domains.

2. Three of the six programmers who helped with the development of
the programs for the pilot study were correctly classi�ed 100% of the
time. As stated in Section 3.7.2, the three programs each programmer
developed addressed di�erent problem domains.

3. The programmers who were correctly classi�ed have di�erent back-
grounds. This result was unexpected because from our experience grad-
ing projects, electrical engineering students are less consistent in their
programming style than computer science students and these in turn
are less consistent about their programming style than faculty mem-
bers. One could expect thus to �nd a greater percentage of matchings
among faculty members and computer science students.

4.5.2 Success Rate by Programmer

A small number of programmers were misclassi�ed 30% of the time or
less (see Table 4.4. In this category we have the programmer who provided
the most programs (seven programs: three for the pilot study, a multi-user
chatting program, a lexical analyzer, and two database tools). The rest of
the programmers in this category had between three and four programs.

For the programmers who were classi�ed less than 50% of the time (see
Figures 4.6 and 4.5,) we looked at their code to �nd out why we failed to
classify them (two programmers were never classi�ed correctly). We were
surprised to �nd that they had varied their programming style considerably
from program to program in a period of only two months.

As an example of how inconsistent these programmers are, consider the
indentation patterns for programmer 18 as shown in Figure 4.1. Not only
does the indentation style vary wildly, but sometimes the indentation style
has no relationship with the semantic indentation levels as seen in the pro-
gram fragments 4 and 5.

53

Table 4.3: Programmers Classi�ed with 100% Accuracy

Programmer Category Programmer Class

1 Students 1 Graduate student in Computer Science
2 Pilot 1 Graduate student in Electrical Engineering
4 Students 1 Graduate student in Computer Science
5 Students 1 Graduate student in Computer Science
8 Students 1 Graduate student in Computer Science
9 Students 1 Graduate student in Electrical Engineering
10 Pilot 2 System administrator and security guru
12 Students 1 Graduate student in Electrical Engineering
13 Pilot 2 Graduate student in Computer Science
14 Students 1 Graduate student in Computer Science
16 Faculty Faculty member of the department of computer

science; area of research is numerical analysis
17 Students 1 Graduate student in Electrical Engineering
20 Students 1 Graduate student in Electrical Engineering
21 Students 1 Graduate student in Computer Science
23 Students 1 Graduate student in Mathematics
27 Students 1 Graduate student in Computer Science
28 Students 1 Graduate student in Computer Science

Table 4.4: Programmers Classi�ed with 70% | 100% Accuracy

Programmer Category Programmer Class

6 Students 1 Graduate student in Electrical Engineering
7 Students 1 Graduate student in Electrical Engineering
11 Pilot 1 Graduate student in Computer Science
19 Pilot 1 Graduate student in Computer Science

Students 2
24 Students 1 Graduate student in Computer Science

54

Table 4.5: Programmers Classi�ed with 20% | 50% Accuracy

Programmer Category Programmer Class

3 Students 1 Graduate student in Electrical Engineering
15 Students 1 Graduate student in Computer Science
22 Students 1 Graduate student in Computer Science
25 Pilot 1 Graduate student in Computer Science

Students 2
29 Faculty Faculty member of the department of computer

science. Area of research is software engineering
and compiler construction

Other misclassi�ed programmers showed a consistent programming style.
This fact is a clear indication that the metrics chosen for our experiment
were not comprehensive enough to distinguish among them. But their pro-
grams are far from identical as posterior inspection of their code revealed.
For programmer 26, for example, we could �nd several characteristics that
remained consistent throughout:

1. The programmer used the RCS revision control utilities on all his pro-
grams, which of course show his login id.

2. All his comments are unindented one-line comments

3. For every system call that resulted in error, an error message was
printed to the standard error using either the fprintf or perror system
calls.

4.5.3 Consistency of Classi�cation

Our experiment also helped us predict the performance of the metrics when
a program not included in the original database is considered. For each pro-
gram, we removed it from the database and later told SAS to classify it. As
expected, the results average 73 %. However, this stage of our experiment

55

Table 4.6: Programmers Classi�ed with 0% Accuracy

Programmer Category Programmer Class

18 Students 1 Graduate student in Computer Science
26 Students 1 Graduate student in Computer Science

shed some light as to the consistency of the misclassi�cation. Mainly, some
programmers are misclassi�ed consistently. Programer 18 was misclassi�ed
consistently as programmer 12, programmer 19 as programmer 17, program-
mer 11 as programmer 18, and programmer 26 as programmer 9. We can
conclude that even though the metrics are not good enough to classify these
programmers correctly, the misclassi�cation is not random. A more re�ned
set of metrics could help distinguish among these programmers.

4.5.4 Performance of Metrics

The statistical analysis tools used provide little support for ranking the per-
formance of individual metrics. The removal of any one metric from the
analysis can have negative or positive e�ects, independent of the quality of
the metric. We can illustrate this point using a simple example. Consider
the metrics shown in Figure 4.2, where the results of two metrics are plotted
for three programs for each of four users.

The attentive reader might notice that both metrics show large varia-
tions for users three and four and the general usefulness of these metrics
individually is limited. However, the combination of these metrics provides
unequivocal information to the authorship of the programs tested because
both measurements are clustered together, with low or high values, or dis-
persed.

56

while(condition)
{
if(condition)
{
while(condition)
{
if(condition)
{
statements;
}
}
}
}

while(icondition) {
 if(condition) {
 while(condition) {
 if(condition) {
 statements;
 }
 }
 }
}

if(condition)
 {
 statements;
 }
else if(nargs == 2)
 {
 statements;
 }

statements;
 while(condition)
 {
 statements;
 statements;
 }
statements;

for(assignment;condition;increment)
 statement;
 statement;
 statement;
 return(value);

Fragment 1 Fragment 2 Fragment 3

Fragment 4 Fragment 5

Figure 4.1: Indentation Style Change for Programmer 18

57

User 1

User 2

User 3

User 4

Metric 1

Metric 2

Figure 4.2: Interdependency of Metrics

58

Chapter 5

Conclusions

5.1 Conclusions

5.1.1 Quality of the Experiment

The �rst issue that must be resolved is about the quality of the data collected
for our experiment. Is the data collected representative of the programming
methodologies we are likely to see in real production environments? As stated
in section 2.2.2, we noted that the experiment performed by Cook and Oman
was fundamentally
awed because the programs analyzed were most likely
cleaned and beauti�ed and the algorithms considered addressed the same
problem domain.

5.1.2 Existence of Identifying Patterns

The experiments we have performed for this paper support the theory that it
is possible to �nd a set of metrics that can be used to classify programmers
correctly. Close visual examination of the source code provided by all the
programmers involved in our experiment reveals that programmers tend to
show repeating patterns in their programs.

Clearly it is possible to identify ownership of a program by examining
some �nite set of metrics. As expected, programmers are skillful with a
limited set of constructs, mainly those that are well known to them and
that allow them to write programs faster and more reliably. It would be
unrealistic to assume that any programmer can develop programs e�ciently

59

Table 5.1: Experimental Metrics Subset

Programmer
Metric 10 10 10 11 11 11 16 16 16

PRO2b 0 4 0 0 0 0 1 0 0
PRO2c 4 8.3 9 4 4 7.2 8 14 6.5
PRO3d 0 0 0 0 0 0.33 0.5 1 1
PSM1 50 0 0 100 100 66.67 100 100 100
STY1aM 8 7.76 8 1.72 2.41 1.79 4 4 3.97
STY1d 100 100 100 0 0 0 23.81 41.67 93.75
STY1e 100 100 100 100 100 100 23.81 41.67 87.5
STY2M 0 0 0 0 2.5 1 0 0 2.78
STY6b 0 0 0 9.09 16.85 6.32 10.53 10.34 1.83
STY5 2 2 2 1 1 1 1 1 1

and correctly using an unfamiliar programming style. This does not only
apply to the structure of the programs, but also to the look and feel of
it; such metrics as, for example, average blank lines over lines of code can
indeed remain surprisingly constant. Programmers organize information on
the screen such that logically independent portions of the code can be easily
recognized.

Consider, for example the subset of the metrics collected for our exper-
iment that are shown in table 5.1. Even a �rst glance at these �gures will
show the repeating patterns that have allowed our statistical analysis to
classify most of the programs considered. Programmer 10 has, for example,
consistent patterns on metrics STY1aM, STY1d, STY1e, STY6b and STY5.
Programmer 11 is also consistent with the same metrics, showing lower values
for metrics STY1aM and STY5 and higher values for metric STY6b.

5.1.3 Performance of the Metrics Chosen

Even though we are satis�ed with our choice of metrics, the results presented
in this paper clearly show that we will not be able to correctly classify all
possible programmers successfully with this set of metrics. Experience and

60

logic tell us that a small and �xed set of metrics are not su�cient to detect
ownership of every program and for every programmer.

By no means do we claim that the set of metrics examined is the only one
that might yield stable metrics. During the data collection and analysis of
the experiment, we noted that the following metrics might be of considerable
use in future experiments:

1. Use of revision control system headers. We were surprised to see that a
considerable portion of the programmers examined used the automatic
identi�cation and log features of the RCS Revision Control System. As
an added bonus, such identi�cation strings will provide the login name
of the programmer in question1.

2. Another metric that could have been used successfully is the use of
literals in code versus the use of global constants.

3. One programmer's idea of debugging statements was commenting out
the print statements. This was done consistently and it might provide
another useful metric.

We have not found any experimental evidence of a relation between a
program's data structures, length of code, and its e�ciency. If software
metrics that measure this relationship do exist, they are most likely limited
in value for our purposes. As stated before, we are convinced that the analysis
of the software complexity metrics, including the analysis of the complexity
of data structures, will not yield interesting results.

5.1.4 Evolution of Programming Style

As mentioned in section 2.3, we do not expect that the metrics calculated
for any given programmer would remain an accurate tag for a programmer
for a long time, even though in our experiment we have correctly identi�ed
the only programmer who provided code developed over a number of years
(programmer 16). Further research must be performed to examine the e�ect
that time and experience has on the metrics examined on this document.

1It is easy to alter the user name in the RCS automatic identi�cation feature, and as
such, excessive con�dence must not be placed on its accuracy

61

It would be logical to conclude that for the authorship analysis techniques
to work, the metrics would have to be gathered continually over time. As
mentioned in Section 1.2, compilers and operating systems would have to be
enhanced and signi�cant research would have to be done in the development
of operating systems to enforce the use of these metrics.

5.1.5 Classi�cation of Programmers

As mentioned in Section 1.1, we have shown that there exists a mechanism
that can be used to ease the recognition of authorship in computer programs.
We would like to quote, from Section 1.3, the paragraph that most accurately
describes the purpose of the development of this paper:

Our goal is to show that it is possible to identify the author of
a program by examining its programming style characteristics.
Ultimately, we would like to �nd a signature for each individual
programmer so that at any given point in time we could identify
the ownership of any program.

From the results presented in this paper, it is clear to us that the au-
thorship analysis tools that can be constructed by the examination of source
code with the metrics chosen herein might never give a precise identi�cation
of the author of the program.

There is a clear parallel between this and the identi�cation of people
based on physical descriptions involving weight, height, hair coloring, facial
expressions, etc.; certainly many people will match a speci�c description.

However, much like in courtrooms around the world, a description of
a programmer using the metrics presented might be su�cient evidence, or
supporting evidence, to prove the identity of a person.

At this stage, we can only classify our metrics as rudimentary and we are
now convinced that it is possible for more than one programmer to have the
same basic programming style. So, it might not be possible to �nd a set of
metrics that might uniquely identify this programmer.

The results of this paper, however, support the conclusion that within
a closed environment, and for a speci�c set of programmers, it is possible
to identify a particular programmer and the probability of �nding two pro-
grammers that share exactly those same characteristics should be small.

62

5.2 Future Work

In literature, observations are made about the writer's environment to con-
clude that an author could not have written some literary work. It is un-
doubtedly true that in computer science, such observations would also be
useful. Section 2.2.1 mentions that Mark Twain makes such observations
about Shakespeare. Similar observations could be made about a program
if we have previous work by a programmer. For example the preference of
revision control systems, integrated development environments and the edu-
cational background of a programmer might all be used to show that it would
be unlikely for the programmer to develop a speci�c piece of code.

Also, a larger and more comprehensive set of metrics needs to be exam-
ined. Many of the metrics that may provide good statistical evidence of the
authorship of a program were not calculated in this paper. It would also
be interesting to see if a system can be built that would use a di�erent set
of metrics for each programmer. Most likely, arti�cial intelligence or expert
systems to search for repeating patterns on the metrics calculated will be
needed rather than using discrimination analysis.

During the development of this document, it became apparent that other
statistical methods can be used for the analysis of some, or all of the metrics
considered herein. In particular, the use of cluster analysis and Bayesian
analysis should be investigated, as well as weighting of metrics and the use
of prior probabilities.

Finally, if we would like to use programmer identifying characteristics
to enhance real-time intrusion detection, more work must be performed in
compilers and operating systems. The identifying characteristics must be
preserved in binary executables and this information must be protected to
prevent alteration.

5.3 Closing Remarks

It was mentioned in Section 1.2 that there are four areas that motivated our
research. We recapitulate brie
y with supporting evidence as follows:

1. We are convinced that the results presented herein have demonstrated
that authorship analysis techniques could be used in courts as support-

63

ing evidence. However, further research must determine if the metrics
considered herein are general enough.

2. In the academic community, unethical copy of programming assign-
ments is a problem that we might partially solve. For one case in our
experiment, the authorship analysis tool we developed failed to iden-
tify one of the programmers in our data set. We closely examined
the programs of this particular programmer and we question that this
particular student was the author of all the programs involved.

3. In industry, the techniques presented herein might be used to guaran-
tee that the programmers involved in a project are indeed following a
programming methodology.

4. Real-time intrusion detection systems could be enhanced to include au-
thorship information. In environments where rigid programming rules
are imposed, the incorporation or compilation of code that was not
developed by the user in question might constitute an abnormal use of
the system; therefore, security violations could be detected.

Also, if the authorship information can be incorporated into the exe-
cutable version of the program, and this information can be protected
from tampering by applying digital signatures, the author of executable
programs could be traced.

64

Bibliography

[All86] L. Allison. A practical introduction to denotational semantics.
Cambridge University Press, �rst edition, 1986.

[And91] G. R. Andrews. Concurrent Programming. The Ben-
jamin/Cummings Publishing Co., �rst edition, 1991.

[BB89] A. Benander and B. Benander. An empirical study of COBOL
programs via a style analyzer: The bene�ts of good programming
style. The Journal of Systems and Software, 10(2):271{279, 1989.

[BM85] R. Berry and B. Meekings. A style analysis of C programs. Com-
munications of the ACM, 28(1):80{88, 1985.

[BS84] H. Berghel and D. Sallach. Measurements of program similarity in
identical task environments. ACM SIGPLAN Notices, 19(8):65{76,
1984.

[Coo87] Doug Cooper. Condensed Pascal. W. W. Norton and Company,
1987.

[Dau90] K. Dauber. The Idea of Authorship in America. The University of
Wisconsin Press, 1990.

[Den87] D. Denning. An intrusion detection system. IEEE Transactions on
Software Engineering, 13(2):222{232, 1987.

[Dij68] E. Dijkstra. Goto statement considered harmful. Communications
of the ACM, 11(3):147{148, 1968.

[Dis37] B. Disraeli. Venetia. New York and London, 1837.

65

[EV91] W. Elliot and R. Valenza. Was the Earl of Oxford the true Shake-
speare? Notes and Queries, 38:501{506, December 1991.

[Eva84] M. Evangelist. Program complexity and programming style. In
Proceedings of the International Conference of Data Engineering,
pages 534{541. IEEE, 1984.

[GJM91] C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals of Soft-
ware Engineering. Prentice Hall, �rst edition, 1991.

[Gri81] S. Grier. A tool that detects plagiarism in Pascal programs. ACM
SIGCSE Bulletin, 13(1):15{20, 1981.

[GS92] S. Gar�nkel and E. Spa�ord. Practical Unix Security. O'Reilly &
Associates, Inc., 1992.

[Han91] D. Hanson. Code generation interface for ANSI C. Software -
Practice and Experience, 38:963{988, September 1991.

[HH92] W. Hope and K. Holston. The Shakespeare Controversy. McFarland
& Company, 1992.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming.
Communications of the ACM, 12(10):576{580, 1969.

[HU79] John Hopcroft and Je�rey Ullman. Introduction to Automata The-
ory, Languages, and Computation. Addison-Wesley, �rst edition,
1979.

[Jan88] H. Jankowitz. Detecting plagiarism in student Pascal programs.
Computer Journal, 31(1):1{8, 1988.

[JW88] R. Johnson and D. Wichern. Applied Multivariate Statistical Anal-
ysis. Prentice Hall, second edition, 1988.

[KP78] B. Kernighan and P. Plauger. The Elements of Programming Style.
McGraw-Hill Book Company, second edition, 1978.

[KR85] B. Kernighan and D. Ritchie. The C Programming Language. Pren-
tice Hall, 1985.

66

[LC90] A. Lake and C. Cook. STYLE: An automated program style ana-
lyzer for Pascal. ACM SIGCSE Bulletin, 22(3):29{33, 1990.

[Led87] Henry Ledgard. C With Excellence: Programming Proverbs. Hay-
den Books, 1987.

[MB93] R. Madison and M. Beaven. FORTRAN For Scientists and Engi-
neers: Laboratory Manual. McGraw-Hill, Inc., 1993.

[Mor91] D. Moreaux. A formalism for the detection and prevention of illicit
program derivations. Master's thesis, Dept. of Computer Science,
University of Idaho, 1991.

[MW92] Merriam-Webster. Webster's 7th collegiate dictionary, 1992.

[Nei63] C. Neider. The Complete Essays of Mark Twain. Doubleday, 1963.

[NS86] T. Naps and B. Singh. Introduction to Data Structures with Pascal.
West Publishing Company, 1986.

[OC89] P. Oman and C. Cook. Programming style authorship analysis. In
Seventeenth Anual ACM Computer Science Conference Proceed-
ings, pages 320{326. ACM, 1989.

[OC90a] P. Oman and C. Cook. A taxonomy for programming style. In
Eighteenth Anual ACM Computer Science Conference Proceedings,
pages 244{247. ACM, 1990.

[OC90b] P. Oman and C. Cook. Typographic style is more than cosmetic.
Communications of the ACM, 33(5):506{520, 1990.

[OC91] P. Oman and C. Cook. A programming style taxonomy. Journal
of Systems Software, 15(4):287{301, 1991.

[Ott77] K. Ottenstein. An algorithmic approach to the detection and pre-
vention of plagiarism. ACM SIGCSE Bulletin, 8(4):30{41, 1977.

[RN93] J. Ranade and A. Nash. The Elements of C Programming Style.
McGraw-Hill Inc., 1993.

67

[RR83] A. Ralston and E. Reilly. Encyclopedia of Computer Science and
Engineering. Van Nostrand Reinhold Co., second edition, 1983.

[SAS] The SAS Institute. SAS/STAT User's Guide. Volume 1, ANOVA{
FREQ, fourth edition.

[SCS86] H. Dunsmore S. Conte and V. Shen. Software Engineering Metrics
and Models. The Benjamin/Cummings Publishing Company, 1986.

[Set89] R. Sethi. Programming Languages Concepts and Constructs.
Addison{Wesley Publishing Company, 1989.

[Spa89] E. Spa�ord. The internet worm program. Technical Report
CSD-TR-823, Department of Computer Science. Purdue Univer-
sity, 1989.

[Spe83] D. Spencer. The Illustrated Computer Dictionary. Merrill Publish-
ing Co., �rst edition, 1983.

[Sto90] C. Stoll. The Cuckoo's Egg. Pocket Books, �rst edition, 1990.

[Tas78] Dennie Van Tassel. Program Style, Design, E�ciency, Debugging,
and Testing. Prentice Hall, 1978.

[Wha86] G. Whale. Plague: Detection of plagiarism using program struc-
ture. In Proceedings of the Ninth Australian Computer Science
Conference, pages 231{241, 1986.

[WS90] Larry Wall and Randal Schwartz. Programming Perl. O'Reilly &
Associates, Inc., �rst edition, 1990.

[WS93] Stephen A. Weeber and Eugene H. Spa�ord. Software foren-
sics: Can we track code to its authors? Computers & Security,
12(6):585{595, December 1993.

68

