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ABSTRACT

Schuba, Christoph Ludwig. Ph.D., Purdue University, December 1997. On the Mod-
eling, Design, and Implementation of Firewall Technology. Major Professor: Eugene
H. Spa�ord.

This dissertation studies one particular aspect of providing communication secu-

rity: �rewall technology. Our work provides a framework in the form of a waterfall

model within which �rewall systems and their components can be designed and eval-

uated.

We introduce a reference model that captures existing �rewall technology and

allows for an extension to networking technologies to which it was not applied previ-

ously. The essential components of the reference model are authentication, integrity

assurance, access control, audit, and their enforcement. All components are governed

by a centralized security policy, and they can be deployed in a distributed fashion to

achieve scaling.

We introduce a formalism that is based on Hierarchical Colored Petri Nets

(HCPN) to describe the functionality of mechanisms used by �rewall technology.

HCPNs provide us with a means of description, composition, simulation, and analy-

sis of �rewall systems.

The implementation of a �rewall depends on its underlying network technologies.

We describe the concept of authenticated signaling and report on the design, imple-

mentation, and exploration of its realization for asynchronous transfer mode (ATM)

signaling, using above reference model. The resulting security mechanism can be used

as a building block in the construction of �rewall systems.
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1. INTRODUCTION

Data communications networks have become an infrastructure resource for busi-

nesses, corporations, government agencies, and academic institutions. Computer net-

working, however, is not without risks as Howard ([How97]) illustrates in his analysis

of over 4000 security incidents on the Internet between 1989 and 1995. Firewall tech-

nology is one mechanism to protect against network-based attack methods. A bal-

anced approach to network protection draws from several other �elds, such as physical

security, personnel security, operations security, communication security, and social

mechanisms ([ISV95, Part II]).

Classically, �rewall technology has been applied to TCP/IP (transmission control

protocol, internet protocol; [Pos81a, Pos81b]) internetworks (reviewed in chapter 3).

Firewalls are used to guard and isolate connected segments of internetworks. \Inside"

network domains are protected against \outside" untrusted networks, or parts of a

network are protected against other parts. Various architectures for �rewalls have

been published and built, such as �ltering routers, or application level proxy services

(see section 3.1).

Landwehr suggests the application of formal models of security for secure system

design (see [Lan81, x1]): by demonstrating that a design to which an implementation

corresponds enforces a formal model of security, a convincing argument can be made

that the system is secure. To date there is neither a reference model nor a theoretical

background for �rewall technology. There is also no de�nition of the term. A reference

model of �rewall technology is the �rst contribution of this dissertation.

A �rewall system is implemented through a number of mechanisms that collec-

tively achieve the desired functionality. This dissertation introduces a design tool

approach based on Hierarchical Colored Petri Nets (HCPN, short CPN) to describe
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the functionality of such mechanisms. CPNs are a formalism that is suited for mod-

eling a system in which synchronization, concurrency, composition, and activities on

regulated ows of information are of concern ([Jen96a]). It can be used for the repre-

sentation, combination, simulation, and analysis of �rewall components and �rewall

systems. The introduction of this design approach is the second contribution of this

dissertation.

The implementation of a �rewall system depends on the underlying network tech-

nology because separate network technologies o�er a variety of features and services.

This dissertation investigates what aspects are common to a subset of thbib.c ese,

namely connection-oriented networking technologies, that can be used to contribute to

the provision of security services. We concentrate on architectural support rather than

the high performance application of understood �rewall techniques such as packet �l-

tering. The third contribution of this dissertation is the report on the design of one

such concept, named authenticated signaling1, and the report on the design, imple-

mentation, and exploration of a prototype as proof of concept.

1.1 Thesis Statement

It is possible to specify a reference model for �rewall technology, given

that �rewall technology is viewed as a set of mechanisms that can enforce

a network domain security policy on communication tra�c entering or

leaving a network policy domain. The reference model captures the state

of the technology up to mid 1997 and allows for its extension to networking

technologies to which it was not applied previously.

A model based on Hierarchical Colored Petri Nets can be used to describe,

compose, simulate, and analyze �rewall components as well as �rewall

systems.

1This term contains the word signaling because connection management protocol messages are
secured. It is called authenticated because connection authentication security services, i.e., authen-
ticity and integrity of such signaling messages are provided.
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The signaling channel of connection management protocols can be used

as a transport mechanism for security functions to secure the connection

management itself and to provide a basic security building block to other

components on the network.

1.2 Dissertation Outline

This dissertation is organized as follows. Chapter 1 gives an introduction and mo-

tivates the topic of this dissertation. Chapter 2 de�nes terminology used throughout

this dissertation. Chapter 3 reviews previous work in network access control security

mechanisms and �rewall technology. Chapter 4 gives a framework for �rewall tech-

nology in the form of a waterfall model of the �rewall life cycle to place the contents

of the remaining chapters into a context and to explain their relationship. Chap-

ter 5 presents a reference model for �rewall technology. Chapter 6 describes a design

tool approach that is based on the formalism of Hierarchical Colored Petri Nets.

Chapters 7 and 8 describe the concept of authenticated signaling and the design, im-

plementation, and exploration of its realization for an ATM (asynchronous transfer

mode) connection management protocol. We close with chapter 9, summarizing our

experiences, presenting ideas for future directions, itemizing our contributions, and

drawing some conclusions.

1.3 Chapter Summary

Firewall technology is a mechanism that protects computer networks as a resource

as well as hosts connected to them. This dissertation contributes in three ways to the

�eld of �rewall technology: it provides a reference model, it introduces a design tool

approach based on Hierarchical Colored Petri Nets, and it reports on the design of a

network security mechanism that can be used for implementing �rewall systems and

the design, implementation, and exploration of a proof of concept realization thereof.
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2. TERMINOLOGY

This chapter de�nes terminology used throughout the dissertation and gives our

de�nition of the term �rewall technology for the purpose of this dissertation. Technical

terms not de�ned in this section are used according to their de�nitions in [BC94,

Com96, LS87]. De�nitions in this chapter are based in [BC94, Com96, LS87] but

extended to �t our needs.

A network is a communication system that allows computers and other electronic

devices attached to it to exchange data. A router, gateway, or switch is a device

that attaches to two or more networks and forwards information from one network

to another.

We de�ne communication tra�c to be the transmission of information over a

network. We denote the set of all possible transmissions by lT. Any instance of com-

munication tra�c, called a transmission unit, is a tuple (ctrl; data) = t 2 lT consisting

of control information (ctrl) and data (data) either of which may be empty, but not

both. The interpretation of what amount of information comprises a transmission

unit depends on the protocol layer of observation. For example, in an instance of

network layer functionality (see open systems interconnection (OSI) model [DZ83]),

the Internet Protocol ([Pos81a]), transmission units are called datagrams.

Attribute t:ctrl can contain information, such as source (t:ctrl:src) and desti-

nation (t:ctrl:dst) addresses, reliability (t:ctrl:reliab) and ow control (t:ctrl:f low)

information, access request information (t:ctrl:acc), and quality of service parameters

(t:ctrl:qos). Attribute t:data may contain application-speci�c payload or a payload

that, at a higher layer of abstraction, can be interpreted as a transmission unit in

itself. Transmission units do not need to contain all �elds of t. For example, some
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�elds may not be necessary at all, such as t:data in control messages; others may be

available through established state, such as t:ctrl:qos in an existing connection.

A security policy is the de�nition of the security requirements for a given system.

It can be de�ned as a set of standards, rules, or practices. We de�ne a network

domain security policy lP as a subset of a security policy, addressing requirements

for authenticity and integrity of communication tra�c t 2 lT, authorization require-

ments for access requests req(t:ctrl:src; t:ctrl:dst; t:ctrl:acc) 8 t 2 lT, and auditing

requirements.

A network policy domain lD is a set of interconnected networks, gateways, and

hosts o�ering services that are governed by a network domain security policy lP.

Communication tra�c is called inside (short, in) at a given time, if it is transiting

or governed by systems or facilities within the network policy domain; otherwise it is

called outside (short, out). Communication tra�c is entering, if it is moving from the

outside to the inside of a network policy domain. It is leaving, if it is moving from

the inside to the outside.

Using the above de�ned terminology and a study of �rewall systems as described

in chapter 3 we arrive at the following characterization of the term �rewall technology:

Firewall technology is a set of mechanisms that can enforce a network

domain security policy lP on communication tra�c lT entering or leaving

a network policy domain lD.

A �rewall system, or �rewall, is an instantiation of �rewall technology.

2.1 Remarks

Our de�nition covers the state of �rewall technology up to mid 1997. Furthermore,

it includes the view of �rewall technology as a distributed security architecture placed

on the data transmission path between communication endpoints.

Our de�nition of �rewall technology states that communication tra�c needs to

enter or leave a network security domain to be of interest to �rewall technology.
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a2 b2

b3 a3

a1 b1

a4 b4

a6 b6
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network(s)

a5 b5

Domain DBI

Domain DAI

Figure 2.1 Communication tra�c governed by �rewall technology between sender
ai and receiver bi. Firewall technology can be applied to communication tra�c for
i 2 f1; 2; 3; 4g, but not for i 2 f5; 6g.

Figure 2.1 illustrates the possible combinations for point-to-point communication.

For any tra�c between sender ai and receiver bi the de�nition includes tra�c that

traverses the protected domain lDA (i.e., fai,big =2 lDA; i = 1) and tra�c that

traverses networks that are not part of lDA with ai 2 lDA and bi =2 lDA (outbound

tra�c; i = 2), ai =2 lDA and bi 2 lDA (inbound tra�c; i = 3), or both ai 2 lDA and

bi 2 lDB (virtual private networking between lDA and lDB; i = 4). Communication

tra�c between ai and bi that neither enters nor leaves a network policy domain is not

subject to �rewall technology (i 2 f5; 6g).

Chapter 3 reviews examples of existing �rewall components, such as packet �l-

tering, network address translation, generic circuit level forwarding, and application-

speci�c proxy forwarding. It is a practical challenge to the designer and maintainer

of a �rewall system to ensure that their functionality implements the security policy.

Mechanisms, such as packet �ltering or network address translation, can be exam-

ined by various criteria to determine their possible contribution to �rewall technology,

such as trust assumptions, at which layer of abstraction they operate, what perfor-

mance characteristics they have, and if they appear transparent to users. The �nal
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appearance of each individual �rewall is determined by its designer's choices in this

space of criteria.

A �rst example of distinguishing criteria is the di�erence in how much trust a

mechanism assumes. For example, mechanisms that operate on received data with-

out veri�cation of its authenticity or integrity make stronger assumptions of trust

than mechanisms that use strong cryptography1 to verify the authenticity of control

packets. Assumptions of trust that are present, but that are not warranted, can result

in less secure �rewall systems.

Secondly, each mechanism operates at a single layer or a range of layers of ab-

straction (operating range) in the layered model of networking ([DZ83]). For example,

the closer the operating range to the application layer the more application-speci�c

detailed information is interpretable by the mechanism, which allows for the imple-

mentation of �ne-grained access control decisions and authentication of high-level

identities.

Firewall designers must understand the assumptions, functionality, and shortcom-

ings of used mechanisms, as well as issues related to their interaction, such as name

resolution, communication, and caching. The set of mechanisms can then be described

by their functionality, their interaction with other mechanisms, and their interaction

with systems outside the �rewall itself.

2.2 Chapter Summary

This chapter de�nes terminology used throughout the dissertation. It provides our

de�nition for �rewall technology to be a set of mechanisms that can enforce a network

domain security policy on communication tra�c entering or leaving a network policy

domain.

1The term strong cryptography (e.g., strong authentication) is used to indicate that algorithms,
key sizes, and parameters are used that make it computationally infeasible by the technology avail-
able at a given time to break the cryptographic protection mechanisms by brute force attempts.
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3. RELATED WORK

This chapter presents an overview of mechanisms that are used for building �re-

walls. A study and comparison of these mechanisms resulted in our de�nition of the

term \�rewall technology" in chapter 2.

Furthermore, this chapter describes characteristics of a particular high perfor-

mance networking technology, the asynchronous transfer mode (ATM), that need to

be addressed for the provision of �rewall security services. Related research by others

is presented.

3.1 Security Mechanisms in Traditional Firewall Technology

Firewalls are implemented using a variety of security mechanisms, such as packet

�ltering, packet labeling, network address translation, and proxy forwarding. Several

research papers and some textbooks describe various, di�ering approaches (see for ex-

ample, [GS96, x21], [BC94], [CZ95], [SH95], [Ran92], [Ran93c], [Ran93b], [RLCB94],

[AR94b], [AR94a], and [Atk95a]). A subset of these mechanisms may interact to

make up a comprehensive �rewall system.

3.1.1 Packet Filtering

In packet �ltering routers security policies are translated into lists of rules (see

[BGP+94], [Cha92], [Dig92]). Each rule allows or denies packets through the �rewall

based on some semantic interpretation of the packets' contents. Rules may interact

with each other, e.g., through their order. If no rule is applicable a default deny stance

may be taken (e.g., the action \discard packet" can be performed). This approach

is an example of the implementation of a concept in computer security that, to the

extent possible, systems should be failsafe ([CZ95]).
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In a TCP/IP (transmission control protocol, internet protocol) packet �ltering �re-

wall, datagrams that arrive at the router are passed to a packet �ltering mechanism.

The �lter calculates a decision to discard or forward each packet according to speci�ed

rules based on the packet header and content, for example, source and destination

addresses and port numbers, and possibly a saved state indicator, for example, ow

identi�ers. Subsequently, the �lter then enforces each decision. The rules operate

exclusively on the contents of the datagram because no context is maintained across

datagrams that belong to the same connection.

Stateful packet �lters do save state for packets that belong to the same session

(e.g., an ftp session). This approach allows packet �lters to make decisions within

the context of a particular connection. The ftp protocol can serve as an example:

inbound ftp data connections can now selectively be allowed through packet �lters

only when necessary instead of allowing all incoming ftp data connections through

the packet �lter as was done previously.

Although a packet �lter o�ers the opportunity to handle and verify all data passing

through it, the lack of end-to-end context prevents a security association from being

established. Packet �ltering does not provide integrity and authenticity control of

the examined packets. The application of �ltering rules to each datagram introduces

some delay because their processing takes time. It may introduce jitter because the

calculation of �ltering results can introduce di�ering amounts of delay for separate

packets.

3.1.2 Network Address Translation

Network address translation (NAT) is a mechanism that was originally proposed as

a short-term solution for IP address depletion ([EF94]). Network address translators

are placed at the borders of \stub" network domains. Each NAT device has a table

consisting of pairs of local IP addresses and globally unique addresses. For all routed

datagrams it translates local addresses into their associated globally unique addresses
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and vice versa. The association can be static or dynamic. NAT discards end-to-end

signi�cance of addresses, making up for it with increased state in the network.

NAT has the feature that the internal address space and network topology are

hidden from the outside. Furthermore, except for address translation, NAT devices

have few other network-based services enabled and are therefore less susceptible to

attack than classical routers.

If an organization has several computer networks at physically separate locations

and a �rewall for each location, it can use these �rewalls to automatically encrypt

all tra�c that is exchanged between them. This approach is called virtual private

networking (VPN) and is di�cult to achieve with NAT technology unless tunneling

between participating NAT devices is provided. NAT does not work if higher layer

protocols or applications use and expose the hidden local addresses (for example,

DNS; [Moc87a, Moc87b]). NAT devices can prevent this problem from occurring in

some cases by rewriting higher layer protocol messages with appropriately mapped

addresses (for example electronic mail; [Cro82]). Applications that carry and use local

addresses across a NAT boundary will not work unless the NAT device is capable of

detecting and processing such instances ([EF94]).

3.1.3 Generic Circuit Level Forwarding

Circuit level �rewalls group packets into connections, for example TCP connec-

tions, by maintaining state across packets ([KK94], [AMP96], and [LGL+96]). One

way to achieve this association is by inserting a generic transport layer proxy process

in the connection. Inbound as well as outbound connections must connect to the

proxy process �rst before any data can be relayed. The proxy uses access rules to de-

termine if the connection should be established or blocked. Circuit level gateways can

provide elaborate access control mechanisms including authentication and additional

client/proxy protocol message exchanges ([AMP96]).

An implementation of generic circuit level forwarding can be hidden in low-level

libraries without the necessity of modi�cation of client/server source code if user
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interaction is not required ([KK94]). Programs initiating connections may need to

be modi�ed for the provision of authentication information. Only few changes are

necessary, but there are challenges, such as the availability of source code, the het-

erogeneity of system platforms, the distribution of programs, and the education of

the user population. The ISI tunnel is an example of generic circuit level forwarding

([DC93]).

3.1.4 Application-Speci�c Proxy Forwarding

Application level �rewalls (e.g., [Che92]) can interpret data in packets according

to particular application protocols and add security services. They are circuit level

proxies as described in section 3.1.3 with the capability of interacting with the com-

munication endpoints through the application's high-level protocol. These proxies are

application-speci�c: for each new application a separate forwarding service must be

provided. These forwarding services can add �ne-grained authentication and access

control services to applications because of their capability to interpret the application

protocol in use ([AR94a]).

Application-speci�c proxies add an additional single point of failure to services.

Proxy services are usually small, service-dependent programs that can be scrutinized

more easily for vulnerabilities before deployment than can server programs. An ex-

ample of a set of proxy servers built according to this philosophy is the TIS �rewall

toolkit ([AR94b]). The drawbacks regarding the requirement of client software mod-

i�cation for generic proxies (section 3.1.3) apply to application-speci�c proxies. Each

application-speci�c proxy adds protocol processing overhead of two additional round

trips through the protocol stack.

3.1.5 Cryptographic Security Mechanisms

The following two cryptographic security mechanisms are standardized by the

Internet Engineering Task Force (IETF) for the IP layer. We are using them here

as examples of a class of cryptographic mechanisms used in �rewall technology: the
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authentication header (AH), which provides integrity and authentication without con-

�dentiality ([Atk95b]), and the encapsulating security payload (ESP), which provides

con�dentiality and optionally integrity and authentication ([Atk95c]). Both mecha-

nisms can operate between a set of hosts and/or gateways, i.e., end-to-end, end-to-

intermediate, or intermediate-to-intermediate, in unicast and multicast mode.

These mechanisms are designed to protect communication tra�c against eaves-

dropping, unnoticed modi�cation, insertion, or deletion. They can be used to build

virtual private networks across untrusted networks, such as the Internet. No protec-

tion against tra�c analysis attacks is provided ([Den82, x3:5:1]). They are usually

algorithm independent by way of algorithm identi�ers included as part of the security

protocol. Standard default algorithms are speci�ed to ensure interoperability of all

implementations at a common denominator.

The mechanisms require the establishment of a security association (SA) among

the set of hosts and/or gateways that are party to the protected communications.

A security association is \the set of security information relating to a given network

connection or a set of connections" ([Atk95a, x1:1]). For the application of these

mechanisms there are practical concerns, such as key management, and e�ciency

considerations, such as the introduction of protocol processing overhead and the in-

crease in communication latency.

The encryption of communication tra�c in the presence of packet �ltering is an

example where two security mechanisms can work against each other. If the packet

�lter is not party to the SA used by the encryption mechanisms it cannot perform

its function because it cannot decrypt the encrypted higher layer protocol headers

needed to process its �ltering rules.

3.2 Advantages of Firewall Technology

As the previous sections describe, �rewalls can protect deployed computing sys-

tems and networked applications. Proponents argue that �rewall technology is more
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than a retro�t patch for shortcomings in systems and protocol design (a survey con-

ducted by the National Computer Security Association (NCSA) documents the pos-

itive experiences and perception of a small set of American businesses ([NCS97a]).)

Because of their placement at the network perimeter, �rewalls can serve as a central-

ized focus of security policy and as a place to collect comprehensive security audits,

even in the presence of secure hosts. Firewalls address some problems of network

security that cannot be addressed by host security mechanisms: they protect the net-

work as a resource as well as the hosts connected to it and provide protection against

some denial of service attacks ([SKK+97, x4:4]).

The aggregation of security functions in �rewalls allows for a simpli�cation of

management, installation, and con�guration of security functions ([BCCH94]). They

improve administrative control and network management via controlled exposure

of internal network structure, topological exibility, and transparency to the user

([BCCH94]). Security �rewalls represent a technology that is widely accepted, avail-

able, cost e�ective, and economically justi�able to management personnel in charge

of purchasing decisions ([NCS97a]).

3.3 Disadvantages of Firewall Technology

Conversely, �rewall technology can provide a false sense of security: it may lead to

lax security within the �rewall perimeter (see [BCCH94, x3]), similar to the way the

supposedly impregnable Maginot Line1 led French army leaders to ignore the need for

provision of additional defense mechanisms further inside their country ([Che97]). In

[BCCH94, x3:1:1] this concern is expressed through another analogy: �rewalls provide

\a hard, crunchy outside with a soft chewy center."

Security �rewalls neither provide \perfect security" nor are free of operational

di�culties. They do not protect against malicious insiders. There is no protection

1After Andr�e Maginot (1877-1932), French minister of war. The Maginot Line was a 150 mile
long system of heavy forti�cations at the eastern frontier of France built before World War II to
protect French territory from Germany. Germany did invade France again, but it went around the
Maginot Line to do so. The Line itself was never taken by force.
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against connections that circumvent the �rewall, such as unauthorized modems at-

tached to computers inside the �rewall because the enforcing mechanism is bypassed.

There is limited protection against illicit rendez-vous (unauthorized tunneled connec-

tions) and data-driven attacks, such as malicious executable code in downloaded Java

applets ([BC94]). Because typical practice does not provide a check of �rewall sys-

tem con�guration against the security policy, changes in system con�gurations may

produce security holes ([NCS97a]).

Firewall technology has been developed for and applied to TCP/IP networks al-

most exclusively ([BCCH94]). It was never developed according to a reference model

and only addressed acute problems at hand. Because of the reactive character of

�rewall design, there is little reason to expect that e�ective protection against new

attacks is guaranteed. An incentive for advances in the state of the art of �rewall

technology has been the need to develop defenses against attack scenarios that have

initially succeeded through or against �rewalls.

3.4 Security Mechanisms for High Performance Network Technologies

The implementation of �rewalls depends on its underlying networking technologies

because they o�er a variety of features and services. This dissertation addresses the

search for mechanisms that can provide �rewall security services for high performance

networking technologies.

This section describes why security services need to be provided in ATM, before

it lists a set of related research projects and product development e�orts in the �eld.

The security mechanisms contributed by these projects can be used to construct

�rewall systems connected to high performance networking technologies.

3.4.1 Problems for Security Services in High Performance Network Technologies

There are a number of problems related to the high speed cell relay nature of the

asynchronous transfer mode and its small cell size. These problems are the reasons
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why existing �rewall mechanisms are insu�cient to provide �rewall security services

for ATM networks.

Security services on ATM data tra�c (in contrast to ATM control tra�c) must

be capable of keeping up with the gigabit speeds at which cells are transmitted. If

cryptographic mechanisms are used, they need to operate at the hundreds of megabits

per second or even gigabit per second speeds. This requirement includes not only

encryption and decryption but also crypto synchronization and key update/exchange.

Such mechanisms need to introduce as little delay as possible to minimize their impact

on the provisioning of quality of service requirements by the network.

Cryptographic mechanisms need to interoperate at various di�erent rates if, for

example, a client connects via a synchronous optical network (SONET) interface at

OC-3c (optical carrier; 155 Mb/s) to a network to which a server may be connected

via an OC-48c (2.488 Gb/s) interface (see [Pie96]). Furthermore, they require secu-

rity messages to be exchanged that are of considerable size (on the order of tens to

thousands of bytes). ATM cells of 48 byte payload each cannot carry those messages

without going through additional encapsulation and segmentation/reassembly steps.

Most practical ciphers have the property that the same cryptographic key should

be used only for a limited time because the more ciphertext is observed by a passive

wiretapper the higher the likelihood that the key can be broken. There are results

by Claude Shannon and Martin Hellman that determine how much ciphertext needs

to be observed before a cipher is theoretically breakable (see e.g., [Den82, x1:4:3]

for a discussion). The practical importance of these theoretical results is limited by

the observation that the interception of enough ciphertext still does not mean it is

a computationally tractable problem to break the cipher. Nevertheless, high speed

communications cause more ciphertext to be observable in a given amount of time

than at slower speeds. It is therefore necessary to change keys more often to limit

the amount of ciphertext a cryptanalyst can collect under one key.
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It is desirable to provide �ne-grained security services to clients. An example is

the encryption of di�erent virtual circuits by di�erent keys to grant all users con�-

dentiality. Such �ne-grained multiplexing requires key-agility (see also section 3.4.3),

the application of keys that belong to the di�erent circuits.

3.4.2 High Performance Packet Filtering

Hughes et al. at Network Systems Corporation have designed and built a high

performance packet �lter to satisfy performance requirements of ATM's high speed

transport ([Hug96]). It implements an extension of �rewall packet �ltering practice

at higher speeds through hardware assistance. It operates by placing a representation

of a given policy close to the data path in switches. For each cell (and if necessary for

the reassembled higher layer frame) it is determined if the policy allows forwarding

or requires discarding of the cell. Content addressable memories (CAMs) are used to

hold the information that describes cached policies. The cache is divided into three

parts: to ensure only authorized virtual circuits are used, to ensure reassembled IP

datagrams meet their classical packet �ltering policy, and to ensure socket policies

are valid.

The mechanism does not introduce a new or improved concept for security en-

forcement. It is merely an application of packet �ltering (section 3.1.1) at higher

speeds through hardware assistance. With the technology available in mid 1997 the

mechanism cannot be used at data rates higher than 155 Mb/s ([Hug96]) while net-

work technologies of higher data rates are already available. We expect that the

performance development of packet �lters will continue to lag behind that of high

performance networking technologies for some time to come.
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3.4.3 High Performance Key-Agile Encryption and Cryptographic Synchronization

Research e�orts at Sandia National Laboratories, MCNC, Portland State Univer-

sity, and the University of Cambridge, UK have focused on the design, implementa-

tion, and evaluation of experimental key-agile cryptographic systems for ATM net-

works. [TPB+96], [SHB95], [SBHW95], and [Chu96] report on high speed encryption

methods, high performance key-agility techniques, and methods for cryptographic

system synchronization. The focus in [TPB+96] is on the exploration of the feasibil-

ity of a hardware encryptor/decryptor prototype that can perform at OC-3 speeds. A

key-agile device was built that uses a number of linear feedback shift registers (LFSR)

in parallel to produce linear recurring sequences with long periods as a key stream

for encryption and decryption ([TPB+96]).

The research and development e�orts by these groups demonstrate that privacy

and integrity services for data (in contrast to control information) can be provided in

high performance network technologies at the mentioned speeds. The same critique

as in section 3.4.2 applies: the performance of these mechanisms lags behind the

performance development of high performance networking technologies.

3.4.4 Signaling Support for Authentication

In a standards contribution, Lyles ([Lyl94]) motivates the development of authen-

ticated signaling with two examples: fraud in a highly deregulated and competitive

telecommunications environment, and the introduction of unacceptable performance

bottlenecks for network access control if typical Internet security mechanisms are

applied. The idea is to address the problem with modi�cations to connection man-

agement protocols to provide a basic building block for security services. The primary

drawback of this approach is that it requires changes to existing and deployed tech-

nologies. However, once developed it can be applied to other connection management

protocols.
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Smith and Stidd ([SS94]) proposes concrete solutions to the problems of user au-

thentication and billing for services and products provided by end systems in broad-

band integrated services digital networks (B-ISDN). Their proposal recommends the

introduction of an information element in point-to-point and point-to-multipoint con-

nection establishment messages. The proposal does not contain details regarding the

types of information that need to be present in the information elements. Further-

more, it does not mention the need for the authentication of further control informa-

tion, such as connection release messages to protect against the threat of a denial of

service ([GS96, x25]).

3.4.5 Signaling Support for Other Security Services

Tarman et al. at Sandia National Laboratories ([TPB+96] and [Pie96]) have in-

vestigated techniques for integrating security enhancements within standard ATM

protocols. Their work has focused on hardware and software encryption in high per-

formance networks (see section 3.4.3) as well as signaling support for encryption,

authentication, and key exchange. Their work in authenticated signaling goes further

than [SS94]. They describe requirements for, and an example of, an authentication

information element ([TPB+96, x8]). Tarman et al. state the need for an \iden-

tity validation" message that may occur at any time during a connection's lifetime.

They do not address the threat of denial of service through unauthenticated connec-

tion teardown. [TPB+96] does not concentrate on the issue of network layer access

control | a central focus of our research.

3.5 Chapter Summary

Firewall technology is based on a combination of mechanisms, such as packet

�ltering, network address translation, circuit level forwarding, and application layer

proxy relaying. As many other technologies, �rewall technology has advantages, as

well as disadvantages.
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The existence of high performance networking technologies has led to the devel-

opment of security mechanisms that can be used in the design and implementation of

�rewalls, such as high performance packet �ltering, key-agile encryption and synchro-

nization, and signaling support for security services. They address problems speci�c

to their technologies and provide generic security services for �rewall technology.
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4. THE FIREWALL LIFE CYCLE

Firewall systems undergo a gradual development and evolution, called a life cycle:

�gure 4.1 is our derivation of the waterfall software life cycle model that goes back

to the late 1950s (see [GJM91] for a description), applied to �rewall technology. The

original waterfall model was a result of the experiences gained in the development of

a large software system, named SAGE.

Figure 4.1 illustrates the �rewall life cycle. The phases (on the left in boxes;

section 4.2) use methods (on the right in italic font; section 4.3) to produce the de-

liverables, which are the output of phases (in the middle in bold face font). The life

cycle does not terminate, but continues through a periodic cycle to review possible

modi�cations to the system or changes in the environment of the system ([GJM91]).

The arrows pointing upwards in the �gure illustrate that any earlier phase can be

revisited occasionally, for example if a new, improved �rewall component becomes

available that is to be incorporated into an existing �rewall system, or if a phase un-

covers defects in a previous phase. A phase does not necessarily have to be completed

before the next one begins, but successive phases may overlap.

We use this waterfall model as a framework for �rewall system design. It serves

to place the contents of the following chapters of this dissertation into the context of

the �rewall design life cycle.
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Figure 4.1 The �rewall life cycle. This waterfall model consists of phases, deliverables,
and methods. The phases (on the left in boxes) use methods (on the right in italic
font) to produce the deliverables between the phases (in the middle in bold face font).
The life cycle does not terminate, but continues through a periodic cycle to review
possible modi�cations to the system or changes in the environment of the system.
The arrows pointing upwards indicate feedback by phases to their predecessors. The
database on the right side illustrates the set of all available �rewall components.
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4.1 Example

This section presents an example of how an organization that designs a �rewall

system from the beginning would follow the �rewall life cycle model. The follow-

ing sections describe the various phases that are present (section 4.2) and the vari-

ous methods that are available to �rewall system designers during this process (sec-

tion 4.3). The description of the example refers to �gure 4.1.

An organization that designs a �rewall �rst needs to de�ne its network domain

security policy. The designer then decides on a high-level design for its �rewall system

following the reference model for �rewall technology as de�ned in chapter 5.

The selection of �rewall components for the detailed design later can bene�t from

several methods. The designer can browse a comprehensive list of �rewall products

(�rewall component comparison; cf. section 4.3.4) to �nd components that are likely

to be of value, possibly giving preference to certi�ed products in that list (�rewall

component certi�cation; cf. section 4.3.3). Before the �nal selection is made, the

designer can evaluate some of the �rewall components himself (�rewall component

evaluation; cf. section 4.3.2).

The designer would then use those components and specify a low-level design

of the �rewall system. To date there has been little help available in this phase of

the life cycle. The design tool and formalism for �rewall mechanisms and systems

as described and analyzed in chapter 6 can be used as the basis for �rewall design

tools. It o�ers support for the graphical design of �rewall systems using descriptions

of �rewall components from a library, simulations of the behavior of the designed

system, and the formal veri�cation of certain properties of interest. Furthermore, the

design tool may be used to generate con�gurations or software components for the

�rewall in its implementation and con�guration phase.

Next, the organization would consult an expert to review the design through

design-oriented testing. After deployment, �rewall testing would be used periodically
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to revalidate con�dence in the correctness of the �rewall installation, taking corrective

actions when they become necessary.

4.2 Phases

The following phases are present in the �rewall life cycle, as illustrated in �gure 4.1.

More detailed explanations of these generic phases as applied to software development

can be found in software engineering books (for example, [GJM91]).

4.2.1 De�nition of Security Policy

The prerequisite phase of the model is the de�nition of a network domain se-

curity policy. A security policy includes answers to questions, such as what the

network perimeter being protected is, which network-based computer services should

be available to outside entities, who those entities are, which outside services should

be available to users located inside the protected network domain, what the necessary

controls are, what the security impact of services is, and what the assumptions on

service and system behavior are.

Such a policy is a prerequisite for the successive stages of the model. The devel-

opment, representation, analysis, or management of security policies is addressed by

the work of others (for example, [Dij96], [Smi93, x6], and [Woo94]). It is outside the

scope of this dissertation. The deliverable of this phase is the policy.

4.2.2 High-Level Design

The purpose of the high-level (or architectural) design is to specify the overall

module structure and organization rather than details. The deliverable of this phase

is a high-level design of the �rewall system.
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4.2.3 Selection of Firewall Components

Once the high-level design is documented, designers can choose among various

�rewall components or modules to construct the �rewall. This phase allows designers

to make a selection of the components that may be part of the �rewall system. The

deliverable of this phase is a set of �rewall components that may be used in the next

phase.

4.2.4 Detailed Design and Veri�cation

During detailed design the selected components are used to architect a concrete

�rewall system in accordance with its high-level design. The components alone are

not su�cient, and modules need to be designed, operational procedures need to be

speci�ed, and network recon�gurations need to be de�ned. The deliverable of this

phase is a detailed design.

4.2.5 Implementation and Con�guration

During this phase the �rewall system is built and con�gured. The deliverable of

this phase is an operating �rewall system.

4.2.6 Review and Testing

Once the �rewall system has been built and deployed, it needs to be tested to

validate that it is capable of enforcing the desired network domain security policy.

This phase reviews not only the �rewall system, but also the policy that is being

enforced. The deliverables of this phase are a reviewed and improved network domain

security policy and a reviewed and improved implementation of the �rewall system.

4.2.7 Periodic Cycle

A �rewall system is subject to frequent changes (e.g., its internal con�guration, its

network con�guration, or the network domain security policy it is built to enforce).
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The purpose of this phase is to revisit a �rewall system periodically to assure that the

�rewall system still operates as it is supposed to, similar to the concept of preventive

maintenance (PM) used in engineering disciplines to establish a periodic, proactive

review of the system. The deliverables of this phase are a reviewed and improved

network domain security policy and a reviewed and improved implementation of the

�rewall system.

4.3 Methods

Figure 4.1 and the example in section 4.1 illustrate when the various methods are

applied in the �rewall life cycle. This section motivates and explains these methods

at a high level. We point out which of these methods are examined in forthcoming

chapters of this dissertation. This section serves as an overview of the bene�ts of

those methods and to place them in the overall framework set by the waterfall model

of the �rewall life cycle.

4.3.1 Application of Reference Model for Firewall Technology

A security model is a description used in analyzing or explaining the desired be-

havior of the security-relevant portions of a system ([Lan81]). Chapter 5 presents

such a security model: the reference model for �rewall technology.

The goal of this functional model is not to produce a standard so that conformant

implementations can interoperate. Rather, the goal is a functional description ar-

rived at from a study of the application domain (described in chapter 3) to facilitate

understanding of the concepts of network access control and how they interact. The

model gives a view of this functionality to the extent that it is enforceable in the part

of the network which is under local control, the network policy domain.

The purpose of the reference model is to give an understanding of

� which functions may need to be present in a �rewall system,

� how they need to be enforced,
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� how they interact on a conceptual level,

� how their distribution can yield scaling bene�ts,

� how they can be applied at various protocol layers, and

� how they can be composed into an overall �rewall security architecture.

Chapters 7 and 8 illustrate how a reference model can guide the design and imple-

mentation of security mechanisms through the example of authenticated signaling.

4.3.2 Firewall Component Evaluation

This method generates evaluations of �rewall components. The analysis of net-

work security products takes expertise and time. Its goal is to facilitate component

certi�cation (section 4.3.3) and component comparison (section 4.3.4). A typical com-

ponent evaluation as described in [CSI97] or [SSS+] uses the following categories for

its analysis:

� Product Identi�cation

� Documentation and User Education

� Functionality

� Operations and Maintenance

� Cost

Each category consists of a set of questions, criteria, or experiments, any one of

which may or may not be applicable to the �rewall product under investigation.

By systematically examining a �rewall product with these criteria, one creates a

comprehensive understanding of the quality of the product. Some questions can be

answered by consulting marketing material of products; others may require detailed

research and specialized expert knowledge in a variety of �elds.
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4.3.3 Firewall Component Certi�cation

The idea behind �rewall component certi�cation is to evaluate �rewall products

and systems using an established list of tests and procedures. Firewalls receive certi-

�cation if they pass the tests. The goal of certi�cation is to reduce real and perceived

risks for computer systems protected by �rewalls through the assurance that the

components operate at or above the certi�ed level of quality. One example is the

laboratory for a certi�cation program at the National Computer Security Association

(NCSA) ([NCS97b]).

The idea of certi�cation has the drawback that products are tested in a generic,

arti�cial laboratory environment, which is di�erent from most real operational envi-

ronments. For example, it is impractical to assume that all problems introduced by

end-user customization can be anticipated by such tests.

4.3.4 Firewall Component Comparison

This method is a comparative study of �rewall components. A popular represen-

tation of its results is a matrix in which �rewall components are listed on the one

axis (rows, for example), and criteria are listed on the other axis (columns, for exam-

ple). The squares in the matrix contain the evaluation result of the criterion listed

in its column applied to the �rewall component listed in its row. The purpose of

such a matrix is to provide a representation for overview and comparison of �rewall

components and their criteria.

There is at least one such comparative study available that is periodically updated

and published: the �rewall product matrix by the Computer Security Institute (CSI)

([CSI97]).

4.3.5 Application of Firewall Design Tools

Chapter 6 explains a new approach to the design and analysis of �rewall mech-

anisms and �rewall systems. It is based on a formalism called Hierarchical Colored
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Petri Nets. Chapter 6 explains how the formalism can be used as the theoretical

foundation for a �rewall design tool.

The approach o�ers the exploration of the functionality of �rewall mechanisms. It

o�ers the online design of complex �rewall systems through the combination of �rewall

components that are expressed in the same formalism. The behavior and properties of

designed systems can be examined through on-line simulation. Furthermore, results

in Applied Petri Net Theory can be used for the exploration of theoretical properties

of the modeled systems.

4.3.6 Generation of Firewall Implementations and Con�gurations

Design tools as mentioned in section 4.3.5 can support the automatic generation

of the implementation of components. Using this same mechanism, Pinci and Shapiro

([PS91]) reports the development of a software application for electronic fund transfer.

Calabrese ([Cal96]) describes a tool for building �rewall-router con�gurations, thus

demonstrating the possibility of providing portability of high-level policies across

platforms. Furthermore, Calabrese's approach is a solution to overcome a di�culty

described by Chapman in [Cha92] where he concludes that the usage of contemporary

�rewall con�guration languages is a process prone to error.

4.3.7 Design-Oriented Firewall Testing

Ranum proposes an approach called design-oriented testing of �rewalls ([Ran96,

Ran97]). It is a combination of manual and automated testing of con�gurations

and release levels of the deployed �rewall components and accessible network-based

services. Design-oriented testing examines �rewalls �rst at a high-level and then top

down at increasingly detailed lower levels as far as it is sensible to go.

It proceeds in the following steps:

1. Comparison of the implementation to the owner's plan of what is supposed to

be implemented.
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2. Manual investigation of the con�guration through management interfaces.

3. Operational testing of the �rewall. The analyst would use tools to probe the

�rewall and network behind the �rewall for exposed services and would test if the

�ltering rules perform the actions they are supposed to perform. Section 4.3.8

goes into more detail of this step.

4. Examination of the allowed services. The analyst needs to assure that all avail-

able patches to known vulnerabilities are applied.

5. Assignment of a periodic review cycle of the �rewall by the same process.

The approach results in:

� A policy review.

� An implementation review, which consists of an approved �rewall con�guration

and component release levels.

� An assessment of services, which consists of an approved list of services, their

con�gurations, and their release levels.

� A review cycle.

This approach is applicable at the point where a �rewall implementation already

exists. It does not give guidance for how to design, choose, build, or deploy a �rewall.

A further discussion of this issue is outside the scope of our work.

4.3.8 Operational Testing of the Firewall:

Operational testing is known under various names, such as \penetration testing,"

\�rewall testing," or even the \tiger team approach," and promoted by a number

of practitioners (see for example [MS96, Sch97]). The idea behind this approach is

to probe deployed systems for vulnerabilities: a black-box evaluation of the �rewall

after its installation is performed. Firewall testing methods have advantages and
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drawbacks analogous to those present in software testing: one can ensure proper

behavior of the system in certain common scenarios and situations, possibly discover

vulnerabilities, but one can never be sure to have tested enough and not missed a

major aw ([GJM91]).

The major advantage of �rewall testing is that it can be applied periodically as

an e�ective means for revalidating con�dence in one's �rewall installation ([MS96]).

This approach addresses the concerns of system administrators to at least periodically

assure the correct behavior of �rewall systems ([IV97]). Ranum mentions that services

are part of the �rewall system to the extent to which they serve security functionality.

They are subject to review as much as the other parts of the system.

4.4 Chapter Summary

A variety of methods is used during the phases of the life cycle of a �rewall system

for its design, implementation, and maintenance. This chapter motivates the contents

of the remaining chapters at a high level and places them in a waterfall model of the

�rewall life cycle.



31

5. REFERENCE MODEL FOR FIREWALL TECHNOLOGY

Chapter 4 presented a waterfall model of the �rewall life cycle. It motivated the

existence of a reference model for �rewall technology and placed it into an overall

context.

This chapter presents such a reference model for �rewall technology. An earlier

version of the model was presented in [LS96a] (see also [LS96b]). Computer net-

working is based on a layered model of communication. Communication protocols

are distributed algorithms that execute between peer instances of the same layer or

a range of layers. Similarly, the reference model for �rewall security services as de-

scribed in section 5.1 applies to a single layer or a range of layers. The reference model

can be applied repeatedly at several layers within a network system as described in

section 5.6.

The model is descriptive in that it captures the functionality of all �rewall com-

ponents and systems we have examined during the development of the model (see

section 3.1). It is prescriptive because its components are su�cient to provide desired

network access control security services (see section 5.2 for arguments why the various

components are su�cient). Its prescriptive character can be used as a guideline for

system design.

In general, the analysis, manipulation, and simulation of a modeled system can

lead to new knowledge and insight without the risk, cost, or inconvenience associated

with its direct manipulation ([Jen96a]). The process of modeling a system gives

the modeler an improved understanding of the modeled system: Jensen states that

modeling as an educational tool is often its primary bene�t ([Jen96a, x1:7]). One of

the limitations system developers face is their own inability to cope with too many
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details at the same time: models help overcome this limitation ([Jen96a]) and can

prove bene�cial during a system's implementation (as experienced in [SSK98, x4:1]).

The main bene�ts of the reference model are the provision of an understanding of

� which functions may need to be present in a �rewall system,

� how they need to be enforced,

� how they interact on a conceptual level,

� how their distribution can yield scaling bene�ts,

� how they can be applied at various protocol layers, and

� how they can be composed into an overall �rewall security architecture.

5.1 Reference Model

The reference model focuses on functionality required by �rewall systems to en-

force network domain security policies. For that reason we chose a functional model

over other types of models, such as data processing, classi�cation, stimulus-response,

or process models ([GJM91]). The idea is that systems are, at a conceptual layer,

composed of separate, interacting functional components.

Our reference model can be interpreted as a system composed of several types

of security components. The components are combined under certain constraints

to make up a �rewall system. The components interact with each other and the

rest of the system, for example through functional interfaces or the sharing of state

information. The interaction with the rest of the system is not depicted in the model.

Section 5.2 describes the components in detail.

Figure 5.1 displays a high-level view of the reference model of �rewall technology

(a more detailed representation is presented subsequently in �gure 5.2). The repre-

sentation in �gure 5.1 is used in this dissertation to explain the reference model in a

stepwise re�ned manner and as a simpli�ed representation of the model for presenta-

tion purposes.
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Figure 5.1 Abbreviated version of the reference model displayed in �gure 5.2. Security
functions (SF) are enforced on inbound and outbound communication tra�c between
principals a and b.

Consider the case where a principal a outside of a protected network policy do-

main attempts to communicate with a principal b inside that domain. The gap

between \out" and \in" can be �lled with intermediate networks of any technology

and topology so long as data can be transmitted between the sender's and the re-

ceiver's networks. Everything between the gap and the representation of principal b

is considered part of the protected network policy domain.

All communications are divided into transmission units that are transmitted by

the network. The reference model operates on one protocol layer or a range of protocol

layers on transmission units at that layer (range, respectively). It operates on inbound

as well as outbound communication tra�c. Transmission units are handled separately

by the �rewall, though state may be retained. The heavy, solid line represents the

conceptual path that transmission units travel.

Shaded boxes represent functions. In �gure 5.1 the boxes labeled SF represent

a collection of security functions that are applied to transmission units exchanged

between principals a and b. The dashed arrows represent the invocation of this

collective function SF. Each SF receives portions or possibly even (a copy of) the

entire transmission unit as input arguments. SFs calculate a result PASS or FAIL
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for each transmission unit. The diamond with the question mark (3? ) represents

the matching of the decision to its transmission unit and the decision branching and

enforcement depending on the result. If the result is PASS, the transmission unit is

forwarded to its destination; if the result is FAIL, an exception occurs (represented by

the solid triangle in the diamond), and the transmission unit is dealt with accordingly

(e.g., recorded to the audit log, and then discarded). The separation of SF into two

boxes serves to further illustrate the bi-directionality of communications.

AF
IF

AF

Control/Data traffic

Audit data flow

AF_PASS
Aud
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AEFAF
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a
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Figure 5.2 Reference model for �rewall technology. The model displays a number of
security functions that are applied to communication tra�c entering and leaving a
network policy domain, capable of enforcing (AEF) the security services of authen-
tication (AF), integrity control (IF), access control (ACF), and audit (AudF), or a
subset thereof. The model is applied at a protocol layer or a range of protocol layers.
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Figure 5.2 depicts a more detailed representation of the reference model of �rewall

technology. It further quali�es the structure of SF, includes an access enforcement

function, and illustrates possible participation by sender and destination.

The access enforcement function (AEF, see section5.2.5) located in the commu-

nication path between these two principals may request the authentication of each

transmission unit, the veri�cation of the integrity of each transmission unit, the access

control decision, and enforce the results of these functions.

Transmission units may need to be authenticated to assure that their apparent

and actual origins are identical (authentication function, AF; see section 5.2.1). The

integrity of the transmission units can be veri�ed by the integrity function (IF; see

section 5.2.2).

The access control function (ACF; see section 5.2.3) determines if the transmission

unit is to be forwarded further into the protected network and toward its destination.

This decision can be based on control information in each transmission unit or on

data contents in the case of content �ltering, such as the search for Java applets or

computer viruses.

Arrows with thin, dashed lines indicate possible invocations of the audit function

(AudF; see section 5.2.4). All blocks that are part of the �rewall system have invoca-

tion access to the audit function to record events and data according to the network

domain security policy in force.

For any network transmission unit, functions AF, IF, and ACF can be called in

any order. Their results are considered for the decision if the transmission unit should

be forwarded toward its destination. There are �rewalls that do not implement all

these functions at any level of the protocol stack. Although they cannot meet the

complete functionality as present in the model, they may be su�cient to implement a

particular network domain security policy. The logic gate symbol (
�
�) indicates the

combination of the results of the three functions into a single PASS/FAIL: if a single

function generates FAIL as a result, the transmission unit should not be forwarded

to its destination.
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Outbound communication tra�c is subject to the same security functions as in-

bound communication tra�c. However, because of the trust relationship between the

�rewall and internal principals, it may not be necessary to enforce the same functions

as on inbound tra�c. For example, if a \trust relationship" exists between internal

hosts and the �rewall, a �rewall designer may choose to omit outbound authentication

veri�cation of communication tra�c.

Authenticity veri�cation, integrity veri�cation, and access control decisions may

be performed close to the network perimeter of the guarded network policy domain or

further inside. In both cases it needs to be assured that any possible path that trans-

mission units can take toward the destination in the guarded network policy domain

is protected by these functions. We will discuss this issue further in section 5.3.

The dashed boxes with labels AF and IF close to principals a and b indicate co-

operation by a sender for the authentication and integrity functions. Cryptographic

protocols, the primary means in network security to provide authentication and in-

tegrity assurance services, may require the participation of the sender (e.g., to provide

cryptographic secrets for the generation of session keys). Without this cooperation,

cryptographic protocols could not be used to provide the necessary services of AF

and IF. The box is dashed to indicate there are authentication procedures that do

not require participation of the sender, and to represent that the participation is not

under control of the �rewall.

There are certain constraints on the interaction of the components. For example,

before the result of a call to the access control function results in communication

tra�c being forwarded toward its destination, the authenticity and integrity of the

arguments of the function invocation must be assured. Without great con�dence in

the authenticity of the arguments for the access control function, its result cannot be

trusted.1 For example, in TCP/IP �rewall technology, IP packet �lters perform their

1This does not imply that the authentication function must precede the access control function.
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actions based on the IP header �elds present in datagrams, none of which are authen-

ticated. This shortcoming has resulted in the exploitation of system vulnerabilities

through, for example, SYN ooding ([SKK+97]) or IP address spoo�ng ([CER95]).

Figure 5.2 displays functions as monolithic boxes; however, such a characteristic is

not meant to be implied as an implementation requirement. The representation is kept

at a high level of abstraction to concentrate on the information ows and functional

dependency of its components. The representation of the model is independent of its

implementation.

The model allows for unilateral and mutual authentication by choosing the ap-

propriate authentication functions on inbound and outbound communication tra�c.

The application of the model is not restricted to an end-to-end, end-to-

intermediate, or intermediate-to-intermediate discussion because there is no limitation

on the choice of principals a and b. In particular, they do not need to be communi-

cation endpoints on destination hosts but can be on intermediate switches.

5.2 Components of Reference Model

As mentioned in section 5.1, the reference model consists of the following func-

tional components: authentication function (AF), integrity function (IF), access (ad-

mission) control function (ACF), audit function (AudF), and access enforcement func-

tion (AEF). This section describes these functional components.

5.2.1 Authentication Functions (AF)

Authentication provides assurance of the claimed identity of an entity. Authenti-

cation provides corroboration of the identity of a principal, within the context of a

communication relationship. A principal is an entity having one or more distinguish-

ing identi�ers associated with it. Authentication services can be used by entities to

verify the purported identities of principals.
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A second form of authentication, called connection authentication2 , provides as-

surance about the authenticity of the sender of data in a connection and the integrity

of transmitted data. Integrity assurance is part of connection authentication. Never-

theless, we treat these two services as separate functions.

According to our de�nition of the term �rewall technology, �rewall enforcement

operates on communication tra�c. It is the task of the authentication function to

verify the authenticity of communication tra�c based on its identi�ers and authenti-

cation information (such as authentication protocol speci�c data). The authentication

function is a predicate and returns either AF PASS or AF FAIL.

If there is any incoming communication tra�c for which no authentication

function is performed, attacks, such as address spoo�ng, become possible (e.g.,

[CER95, CER96]). Furthermore, access control mechanisms may produce incorrect

results if the source identi�er of the access request is not authentic. The same ar-

guments apply for outbound communication tra�c. Therefore the AF is a necessary

component for network access control.

It is necessary that the identi�er that is involved in the authentication process

be interpretable at any place along the connection establishment where it might

be veri�ed. If identi�ers have global signi�cance, this requirement is trivially sat-

is�ed. However, this property is usually not necessary. If an endpoint cannot be

authenticated, or its identifying label cannot be interpreted, its identity is labeled

as \unknown." It is the responsibility of the security policy in force to comprehend

this case. A policy might allow unauthenticated tra�c on its perimeter network (a

network added between the protected internal network and the external network;

popularly called a demilitarized zone network (DMZ)), but not on its internal net-

works; or it might allow unauthenticated tra�c only to reach anonymous network

services, such as anonymous ftp. These types of decisions are made by the access

control function and are discussed in section 5.2.3.

2The term authenticated signaling as de�ned in chapter 1 and used in chapters 7 and 8 addresses
connection authentication, i.e., the authenticity and integrity of the signaling messages.
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Figure 5.3 Model of in-line3 authentication. A claimant attempts to be authenti-
cated by a veri�er through an intermediate agent. Authentication information (AI) is
exchanged between claimant and intermediary, and between intermediary and veri�er.

The following de�nitions are consistent with [Ran93a]. Distinguishing identi�ers

are required for unambiguous identi�cation within a network policy domain. They can

be distinguished at a coarse level by virtue of group membership or at the �nest degree

of granularity identifying exactly one entity. The term claimant is used to describe a

principal for the purpose of authentication. The authentication veri�er is an entity

which is or represents the entity requiring an authenticated identity. Authentication

of a claimant to a veri�er is called unilateral authentication. An entity involved in

mutual authentication will assume both claimant and veri�er roles.

Authentication methods rely on one or a combination of the following principles:

something known (e.g., password), something possessed (e.g., security token), or some

immutable characteristic (e.g., biometric identi�er) (see [Tuc97, x91:2]).

There are authentication schemes with and without trusted third party involve-

ment (see [Ran93a, �gures 1,2]). In the one case no trusted third party is involved.

The claimant establishes his identity with the veri�er through a direct exchange of

authentication information. Third parties can get involved in a variety of ways (see

[Ran93a, �gures 3,4,5]): in-line3 (a trusted entity intervenes directly in an authen-

tication exchange between the claimant and the veri�er, e.g., ftp proxy; �gure 5.3),

on-line3 (one or more trusted parties are actively involved in every instance of an

3ITU terminology; see [Ran93a]
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Figure 5.4 Model of o�-line3 authentication. One or more trusted parties support the
authentication veri�cation without being involved in each instance of authentication.
An example is a veri�er using a third party public key repository because public keys
are required as part of an authentication protocol.

authentication exchange, e.g., Kerberos; [SNS88]), or o�-line3 (one or more trusted

parties support authentication without being involved in each instance of authenti-

cation; �gure 5.4).

Liebl provides a comprehensive bibliography on authentication in distributed sys-

tems in [Lie93]. Notable publications investigating the concept of authentication as

a basis for other security services are [BAN89, Nes90, BAN90], [LABW92], [Ran93a],

[HA94], and [WL93b].

5.2.2 Integrity Function (IF)

The integrity function protects communication tra�c from unnoticed and unau-

thorized modi�cations, such as insertion, replacement, or deletion ([Den82, x1:2]). It

cannot prevent these violations from happening, but it can detect and ag them after

the fact. It is a predicate and returns either IF PASS or IF FAIL.

Connection hijacking, such as the active attack against TCP described in [Jon95],

is possible if there is any transmission unit for which the integrity function is not
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applied. Thus, the integrity function is necessary to protect against network-based

active wiretapping.

Although possible, and in cases desirable, to provide an additional data con�den-

tiality service, it is not necessary to assure integrity through encryption of the whole

data stream. Integrity and con�dentiality services each serve di�erent purposes and

have di�erent performance characteristics.

There are a variety of mechanisms to detect modi�cation of data ranging from

checksum schemes, such as cyclic redundancy checks (CRC), to cryptographically

secure digital signatures. Schneier and Stinson describe a number of such mechanisms

in [Sch95] and [Sti95]. Keyed MD5 (message digest 5; [MS95]) is an example of such

a mechanism to provide data communications integrity assurance. We describe the

use of some of these mechanisms as part of the integrity function in our prototype

implementation in chapter 8.

5.2.3 Access Control Function (ACF)

The purpose of the network access control function is to generate the answer to

the question of whether communication tra�c is allowed to be forwarded past the

�rewall toward its destination, or not. This function is a predicate. Its two possible

results are ACF PASS and ACF FAIL.

If there is no access control function on incoming communication tra�c, access

to arbitrary services is possible (e.g., unauthorized �le retrievals via the trivial �le

transfer protocol (TFTP); [CER91]. A single TFTP packet is su�cient to form a �le

transmission request.) Furthermore, without an access control function on incoming

communication tra�c, data-driven attacks cannot be prevented (e.g., transmission

of Java applets containing malicious code; [MSR97]). Thus, an ACF is necessary to

provide network access control.

The access control function also needs to be enforced on outgoing transmission

units. Otherwise, policies, such as \No access to external Web-sites is allowed during

business hours," could not be enforced. A second reason is that this function enables
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the prevention of information leakage (e.g., an ftp transmission of a password �le, or

trade secrets.)

Decision Request Decision

Initiator ADI

Access Request ADI

Target ADI

Contextual Information
Retained ADI

ACF

Access Control
Policy Rules

Figure 5.5 Model of the access control function (ACF). The ACF serves requests
of the form req(t:ctrl:src; t:ctrl:dst; t:ctrl:acc) 8 t 2 lT. It takes as inputs a decision
request, initiator identi�er, target identi�er, and access request ADIs (access control
decision information), an access control policy, and contextual information.

Figure 5.5 illustrates the input/output behavior of a generic access control func-

tion. Any such function operates on a subset of the following input information:

source and destination information, the type of access request, contextual informa-

tion, and retained access control decision information (ADI). A security policy pro-

vides access control policy rules to the decision process. The access control function

calculates a result that either allows or denies access, based on the policy and the

supplied information.

This model of access control includes two main principals: an initiator and a tar-

get. Initiators can be human beings or computer-based entities that access or attempt

to access targets. Targets represent computer-based or communications entities to

which access is attempted. The access enforcement function is located on any possible

path between initiator and target. It is part of the trusted computing base.
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The object of the decision, communication tra�c t 2 lT, needs to contribute

initiator information (t:ctrl:src), target information (t:ctrl:dst), and the access re-

quest (t:ctrl:acc). Source and destination address information are part of the control

information, be it conveyed through out-of-band signaling messages (in connection-

oriented communications), or as part of packet headers (in connectionless commu-

nications). The type of access t:ctrl:acc may not be explicitly present in t:ctrl, but

encoded through a combination of source and destination address information. For

example, in TCP/IP well-known destination port numbers map to services that o�er

a certain type of access. We assume that external state can be retrieved whenever

necessary and that the access control function can retain ADI for later use.

In the case of application-speci�c proxy servers, the access control function may be

part of the proxy service. In this case, some contents of t:data can be input to a �ne-

grained access control decision. This approach has e�ciency drawbacks if applied in a

generic fashion at the network perimeter at the network layer. However, the approach

can be feasible in speci�ed solutions, e.g., attempting to detect certain types of Web

tra�c in the data stream to disallow its passing of the �rewall. For example, Martin

et al. ([MSR97]) explores mechanisms to block possibly hostile external Java applets

from passing through a �rewall. Such mechanisms can be part of the ACF.

Much research has been performed on the semantics of access control (see e.g.,

[Den82, Chap.4], [Lun89], [ABLP91], [Ran95], [WL93c], [WL93a], and [YS96]). Sev-

eral publications propose languages as tools for the speci�cation of access control

policies and their enforcement. A rich set of theories and existing implementations

can be used.

One such example is domain type enforcement (DTE), �rst described in [BK85].

Domain-based access control takes a hierarchical approach to the scaling issues of

access control. It is not feasible to specify security policies exhaustively for all possible

participating entities in a large distributed system, be it as access control lists (ACL),

capabilities, or commpacts [sic] ([RW96]). Domain-based access control represents
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the structural relationships among entities in a set theoretic approach, e.g., users can

belong to a group of engineers, or �les can belong to a certain project.

Authentication and access control are inherently related. If we want labels to

identify an entity at the highest possible level, these labels can become arbitrarily

complex. In general it is not possible for a low-level authentication module in the

network layer to perform its operation on this scale because certain high-level infor-

mation necessary to perform the access control decision is not present at the network

layer. This problem is described in [MS91]. It is the conclusion of that paper by Mof-

fet and Sloman that general, application-independent access control at the network

layer is not feasible.

It is also impossible to devise a scheme where the access control function at the

network layer attempts to negotiate the retrieval and transmission of required infor-

mation with its peer's higher layers. A paper by R�oscheisen and Winograd gives an

example that illustrates that the approach of security negotiation in all but the sim-

plest cases becomes a complex synchronization and coordination problem that can

lead to deadlock situations ([RW96]). Participants in the negotiation do not know a

priori what information the peer requires to make the local access control decision.

Including all data that can possibly be needed in the access request is prohibitively

expensive and possibly violates privacy concerns of the initiator.

Because of these issues, our model needs to be one of access control delegation. It

is the role of the security policy and the �rewall system in complex transactions to

assure communications occur only with entities (e.g., programs) that are trusted to

enforce the policy appropriately. For example, anonymous �le transfer requests should

be served only by a server whose �le system security is known to be appropriate for

anonymous �le transfer service.
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5.2.4 Audit Function (AudF)

The audit function provides the capability of recording an uninterrupted, ordered

journal of signi�cant system events: what is designated as signi�cant is determined

by the security policy in force.

All components of a �rewall system need the opportunity to record information in

a consistent manner for use by systems, such as noti�cation utilities, audit trail anal-

ysis tools, intrusion detection engines, and billing agents ([Pic87]). The information

is also provided to authorized personnel for security and system monitoring.

An audit system should be constructed in such a way that if a system viola-

tion occurs, the events leading up to and including that violation are reconstructible

([Tal92]). Shimomura and Spa�ord demonstrate ([Shi95, Spa88]) how audit infor-

mation may be used in the aftermath of a system violation for the recovery of its

functionality and the investigation of what led to the violation. Furthermore, an au-

dit system might allow for the monitoring of systems prior to a violation. Attempts

to violate security may then be noticed and acted upon before a violation occurs

([Tal92]).

Audit does not imply the storage of redundant information beyond what is needed

to establish monotonicity. However, to achieve fault tolerance, in particular in adverse

situations where portions of audit information are deliberately deleted, the storage

of redundant information in several locations is highly desirable: redundancy allows

cross-checks for the correctness of information. Detected inconsistencies can be a

warning sign of tampering. Recorded data needs to be protected from unauthorized

modi�cation, retrieval, and addition. The audit system itself needs to be protected

against tampering, or the recorded data cannot be trusted. Audit in distributed

systems adds several aspects, such as the problem of chronological synchronization of

audit events, consistency of record formats, naming issues, and correlation of events

for analysis purposes. They are beyond the scope of this dissertation.

Picciotto argues in [Pic87] that the inclusion of a comprehensive auditing facility

is a necessary security enhancement for any system. Security policies place various
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levels of emphasis on the importance of audit: in some cases the availability of the

audit subsystem may not be necessary, in others required. In the latter case there is a

functional dependency among all recording clients and the audit system itself, similar

to the dependency of security services, such as access control on authentication. In

that scenario, if the audit subsystem is not present, the remaining system is not

allowed to make progress until the functionality of the audit subsystem is restored.

5.2.5 Access Enforcement Function (AEF)

The access enforcement function needs to enforce that the functions explained

above (authentication function, integrity function, etc.) are called if required by the

network domain security policy. Otherwise the access enforcement function will not

receive the necessary indication at the decision points indicated by the diamonds in

�gures 5.1 and 5.2 to make and to enforce its decision. The logic gate symbol (
�
�)

illustrates that all of the results of the applied functions are part of the decision if

the packet is to be forwarded toward its destination (inbound or outbound), or if it

is to be discarded.

It is not su�cient to calculate the results of the functions; they need to be enforced.

Therefore, without the access enforcement function all of the above attacks (and many

more) are possible because of the lack of a guarantee that the results of the functions

were enforced.

5.3 Distributed Enforcement

Figure 5.6 illustrates the classical view that �rewalls are security devices that

enforce security policy close to the network perimeter. The box labeled \Firewall"

can take on various con�gurations, but their common characteristic is the existence

of a single \choke point" or a small set of such choke points at the network perimeter

([CZ95, x6]). The �rewall is a central point of failure and becomes a performance

bottleneck in the presence of high performance networking technologies ([Lyl94]).
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a1 B1
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AF IF ACF

Figure 5.6 Example of classical approach to �rewall technology: central application
of a focused security enforcement device.
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B2

B3
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b1

IF

Figure 5.7 Example of distribution of functional components within one layer

As we explain subsequently and validate through experiences with the prototype

system described in chapter 8, the distribution of functions o�ers performance ben-

e�ts. The �rewall functions do not all have to be provided at the same location.

They can be distributed. Their distribution reduces the performance overhead ex-

perienced at the network perimeter because fewer functions need to be computed

there. Functions provided further inside the network can be executed concurrently,

thus potentially contributing to an overall performance increase of the �rewall with

distributed functions. In this fashion, �rewall security services can be constructed

in an architecture that scales better than previous designs. The distribution of the
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components may be driven not only by criteria, such as performance increase through

replication of functions, but also by the goal to improve reliability, availability, and

disaster protection through redundant distribution of functions. Single points of fail-

ure can be avoided by design.

inout

AF

AF/IF

a1 B1

B2

B3

B5

IF
B4

B6

AF IF

b1

Figure 5.8 Second Example of distribution of functional components

Figures 5.7 and 5.8 depict two examples of the distribution of functions. The

example in �gure 5.7 is a system in which the authentication and integrity functions

are enforced at the perimeter switch, and the access control function (ACF) is repli-

cated across several switches within the network. In such a scenario the ACF must

be enforced on any possible path between the sender a1 and the destination b1, i.e.,

on path P1 := B1 � B2 � B4 � b1 and on path P2 := B1 � B3 � B4 � b1. If it was

not, the ACF could be bypassed, and attacks as described in section 5.2.3 became

possible. The example in �gure 5.8 locates the enforcement of functions AF and IF

further inside the network than the example in �gure 5.7.

The following analysis illustrates the possible performance and therefore scaling

bene�ts achievable by a distribution of functions. We characterize the term time
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overhead as follows: given a computational platform with certain performance char-

acteristics and given a function that requires computation on that platform, the time

overhead o is the time required for the function to be computed. Time overheads are

always positive.

De�nition 5.1 De�ne oSt as the sum of the time overheads that are introduced for a

transmission unit t by security functions S � fAF; IF;ACF;AEF;AudFg.

Remark. If S 6= ; then oSt >0 because time overheads are positive values.

Example 5.1 o
fAF;IFg
t is the time overhead introduced on transmission unit t by both

an authentication function and an integrity function. 2

We assume that o
fAEFg
t � minfofAFgt ; o

fIFg
t ; o

fACFg
t g. This assumption is rea-

sonable because the overhead introduced by the AEF consists only of a call to other

functions (e.g., AF or ACF) and the enforcement of the result. No high computational

e�ort is required compared to the functions AF, IF, and ACF. Under this assumption

we do not consider o
fAEFg
t any further in the following analysis. We exclude o

fAudFg
t

based on the same argument.

De�nition 5.2 De�ne OS
T :=

P
t2T o

S
t , where S � fAF; IF;ACF;AEF;AudFg and

multiset T � lT. We denote OS
T at a location L as OS

T;L.

Remark. T � lT is a multiset containing elements of lT as de�ned in chapter 2. T

needs to be a multiset because of the possibility of duplicate messages.

Example 5.2 O
fACFg
T;B2

is equal to
P

t2T o
fACFg
t for all transmission units t 2 T at switch

B2. 2

For a given OS
T;L in a time interval I the performance characteristics at L may be

such that

1. the throughput4 at L is at or above the throughput of the connected networks,

or
4including the time overhead imposed by the calculation of the functions in S
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2. L operates at a lower throughput than the maximum throughput of the con-

nected networks. In other words, a performance bottleneck exists at L.

Interval I is the time interval between the arrival of the earliest t0 2 T at L and

the completion of the processing of the t00 2 T that arrived last at L.

In case 2, a reduction of OS
T;L may improve the throughput of the functions in S to

such an extent that they qualify for case 1, which is an elimination of a performance

bottleneck at L. The following two examples of inbound tra�c illustrate the capa-

bility of distribution of functions to improve performance characteristics and avoid

bottlenecks by design. Both examples assume the computational platforms at Bi for

i 2 f1; 2; 3g are identical.

Example 5.3 In �gure 5.6 the overhead at B1 for a nonempty multiset of trans-

mission units T � lT is OfAF;IF;ACFg
T;B1

. The overheads in �gure 5.7 for T � lT at

B1 is O
fAF;IFg
T;B1

. Comparing the centralized and the distributed design, it is appar-

ent that the overhead at B1 is reduced from O
fAF;IF;ACFg
T;B1

to O
fAF;IFg
T;B1

. Their dif-

ference is O
fAF;IF;ACFg
T;B1

� O
fAF;IFg
T;B1

= O
fACFg
T;B1

, where O
fACFg
T;B1

=
P

t2T o
fACFg
t > 0 per

de�nitions 5.1 and 5.2. Therefore this distribution is an improvement. 2

Example 5.4 Figure 5.8 depicts a scenario where no �rewall function is provided

at switch B1. AF and IF are enforced at both B2 and B3 instead. Comparing the

distribution of functions in �gure 5.7 and �gure 5.85, and given the assumptions

that all transmission units present at B1 are routed through either B2 or B3 (i.e.,

TB2
[ TB3

= TB1
, TB2

\ TB3
= ;) and not all tra�c at B1 is routed through only one

of the switches B2 or B3 (i.e., TB1
6= TB2

, and TB1
6= TB3

), it holds that

1. O
fAF;IFg
T;B2

< O
fAF;IFg
T;B1

and

2. O
fAF;IFg
T;B3

< O
fAF;IFg
T;B1

.

That is because O
fAF;IFg
T;B1

= O
fAF;IFg
T;B2

+O
fAF;IFg
T;B3

and O
fAF;IFg
T;Bi

> 0 for i 2 f2; 3g.

5Note that O
fAF;IFg
T;B1

refers to �gure 5.7. O
fAF;IFg
T;B2

and O
fAF;IFg
T;B3

refer to �gure 5.8.
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Thus, it is a performance improvement to replicate functions and move them away

from the network perimeter as in the distribution in �gure 5.8 over the con�guration

in �gure 5.6.

For some methods of providing multicast service, the assumption TB2
\ TB3

= ;

does not hold because transmission units are replicated in the network. In the mul-

ticast scenario where some or all transmission units need to be forwarded to both

switches B2 and B3, the distribution of functions does not yield the full performance

bene�t as described above. 2

5.4 Example Application of Reference Model

Domain A

Domain B

Public
   Cloud

A2

a1

A1
B1

B2

B3

b1

b2

c1

b

a

Figure 5.9 Example application of reference model of �rewall technology in a con-
nection-oriented communications paradigm.
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Figure 5.9 serves as an example of a scenario in which principal a1 wishes to

establish a connection to principal b1, located in network policy domain B, protected

by a �rewall.

A number of TCP/IP �rewall con�gurations for this scenario are explained in

great detail in [CZ95, Chap.4] and [BC94, Chap.4]. They are based on packet �ltering,

proxy forwarding, or a combination thereof. In this example we assume a connection-

oriented communication paradigm in which a connection between the endpoints must

be fully established before data can be transmitted. ATM and TCP can serve as

examples of connection-oriented communication technologies.

� Originating principal a1 initiates a connection to destination principal b1. Prin-

cipal a1 and b1 are located on opposite sides of the network perimeter that is

being protected. a1 and b1 can be any of a large set of principals, such as hosts,

network interfaces, processes, users, etc.

� As part of the connection attempt, the originator creates at host a1 credentials

for the authenticated call setup (dashed AF/IF in �gure 5.2).

� After the connection request arrives at the destination's network boundary (B1),

an authentication module veri�es the authenticity (AF in �gure 5.2) and in-

tegrity (IF in �gure 5.2) of the connection request. If either fails, the connection

establishment attempt may be terminated at this point, enforced by the access

enforcement function. The authentication function logs the authentication re-

quest and its outcome (AudF in �gure 5.2).

� The call admission control function (ACF in �gure 5.2) calculates its access

control decision. This function is invoked after the result of the authentication

function is known and before the connection is fully established. The access

might be refused at this point because of restrictions by a security policy and

the connection torn down. Again, the access control decision function logs the

decision request and its outcome.
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� A positive access control decision might call for further action, such as the

validation of the functionality of an enforcement module at destination b1, or

the exchange of enforcement parameters with it. Connection establishment can

proceed.

� Once the call is established, a1 and b1 can communicate. Further authentication

and integrity services can then be used on an end-to-end basis to provide assur-

ance about the authenticity and integrity of data tra�c sent over the established

connection.

This example illustrates functions to implement network access control, how they

are enforced, some of their dependencies, and how their composition creates a system

that provides a network access control service. In this example, only the connection

establishment is protected. It is not illustrated how the model may be applied again

at a higher layer, or how the functions may be distributed. Chapters 7 and 8 serve

as a further example of the use of the reference model.

5.5 Scope of Reference Model

The reference model operates on a single network policy domain with its associ-

ated network domain security policy. It does not need to address the interaction or

coordination of several �rewalls operating on disjoint network policy domains: if, for

example, an organization decides to use �rewalls to enforce the division of its internal

network into several network policy domains, it can apply this model separately for

each individual domain.

The reference model does not impose a speci�c approach to the identi�cation of

communication tra�c; rather it requires external naming, addressing, and directory

mechanisms that may be used for name translation. The implementation of mecha-

nisms is not addressed by the model.
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A system described by the reference model collaborates with other services outside

the scope of the model, such as connection management, data forwarding (or switch-

ing) agents, and user processes. It may share state with these services. Although the

reference model provides for security services, such as authentication, their imple-

mentations are provided externally. The overall system depends on the availability

of these services.

We therefore assume the existence of a naming service and a secure key distribu-

tion infrastructure (public or private key distribution, depending on the requirements

of the used security protocols). Furthermore, we assume the binding between the

identi�ers of communicating principals and their associated keys are not compro-

mised. The integrity of the trusted computing base and the appropriate strength of

used cryptographic algorithms and parameters must be assured.

The implementation of functions by mechanisms can be made independently of

how the function is to be used or how the supporting mechanisms are provided.

As de�ned in our de�nition of �rewall technology, this model operates on com-

munication tra�c entering or leaving a network policy domain. It therefore does not

address the security problems associated with communication tra�c that does not

cross a domain's perimeter, as is the case when insiders of an organization launch

network-based attacks against their own organization. Some mechanisms such as

described in section 3.1.5, however, are capable of protecting against such threats.

Nevertheless, this scenario is not addressed as part of �rewall technology.

It is necessary to be precise about the perimeter of the network policy domain

because a circumvention of a �rewall defeats its purpose. For example, it is not

obvious if a company-owned laptop, used by an employee on a business trip, is to be

considered part of the company's protected network policy domain. For the purpose

of our work we assume that the network perimeter is speci�ed in some form, so that

it is clear what equipment is \inside" and what equipment is \outside" of the network

policy domain, and therefore which communication tra�c crosses the perimeter and

becomes subject to �rewall controls.
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As mentioned in chapter 1 the security services provided by a �rewall system

are only a subset of those required to make a system \secure." Firewalls need to

interact with other security aware systems and components. For example, the �rewall

may allow an anonymous connection to be established to an information server and

delegate the �le access control decision to that server. The enforcement of access

control needs to be synchronized and trusted for these types of delegation.

5.6 Repeated Application of Reference Model

Security services as covered by the reference model at a given protocol layer or

range of layers can be expressed by assertions. For example, authenticated signaling

in the asynchronous transfer mode (ATM), as described in chapter 8, o�ers endpoint

authentication and integrity assurance of signaling messages. Thus, an assertion of

the reference model applied to ATM connection establishment tra�c is of the form:

\For all established ATM connections, participating principals are authenticated and

the authenticity and integrity of all signaling messages is veri�ed." This assertion can

then be used as a basis for further application of the reference model to communication

tra�c at other protocol layers.

In designs that include the repeated application of the reference model such as-

sertions are used to determine if the assumptions of security mechanisms at higher

layers are met. Through the matching of assertions and assumptions, designers can

combine the repeated application of the reference model into a multilayered �rewall

security architecture.

This approach is exible and an improvement over the previous state of the tech-

nology that favored monolithic designs because it allows the composition of network

security mechanisms in layered communication systems. The assertions provide an

understanding of which security services are provided by lower layers and can be re-

lied upon. If mechanisms in lower layers are changed, their assertions are likely to

change, and designers can determine if the assumptions of higher layer mechanisms

are still ful�lled by the lower layers' assertions.



56

?

?

SF

SF

b
?

?

SF

SF

?

?

SF

SF

ATM - signaling

TCP/IP - packets

Telnet protocol data units

Assertion: authenticated connection

Assertion: IPSEC services

Assertion: Authenticated end-to-end command interpreter

a

Figure 5.10 Example of the application of the reference model at several layers. It
contains an application of security functions at the ATM layer, at the TCP/IP layer,
and at the application layer. Each layer o�ers an assertion about the provided service
to the higher layers.

Figure 5.10 illustrates an example of the repeated application of the reference

model at several protocol layers: at the ATM layer the application of the model asserts

the authenticity and integrity of ATM signaling. These authenticated connections

are then used for the transmission of TCP/IP packets. If the IPSEC (IP security

working group) security enhancements for IP are used, the model asserts at this layer

that the integrity and authenticity of each IP packet within the authenticated ATM

connections are protected by the IPSEC authentication header (AH). Finally, at the

highest layer in this example, application layer services (e.g., telnet) can provide
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additional security services, such as the authentication of the remote user through a

password exchange.

5.7 Chapter Summary

This chapter presented the reference model for �rewall technology. The functional

model is a guide to structure �rewall security services at a single layer or a range of

layers in a layered model of computer networking. It identi�es a fundamental set

of functions to providing network access control: authentication function, integrity

function, access control function, audit function, and access enforcement function. A

characterization of each function is given without the provision of details of how the

functionality is to be achieved. Furthermore, this chapter explains how the distribu-

tion of the functional components can be used to decrease the performance overhead

introduced by �rewalls in classical �rewall architectures.
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6. FORMALISM FOR FIREWALL MECHANISMS AND FIREWALL SYSTEMS

The reference model described in chapter 5 gives a view of the functionality re-

quired by a �rewall system. Each of its functional components can be implemented

by one or more mechanisms. For example, in TCP/IP (transmission control proto-

col, internet protocol) �rewall technology both packet �ltering and network address

translation contribute to the functionality of network access control. Alternatively,

a single mechanism may contribute to several functional components, such as an

application-speci�c proxy that performs user authentication and enforces an access

control decision. Therefore, there does not need to be a one-to-one relationship be-

tween functions (as described in chapter 5) and implementation mechanisms.

This chapter devises a formalism based on Hierarchical Colored Petri Nets

(HCPN). The goal of this chapter is to develop a practical method, not to develop a

logical formalism. Chapter 4 placed this method in the overall picture of the �rewall

life cycle. HCPNs can be used to express the functionality of mechanisms, to com-

bine them into a system, and to simulate the system in a design tool environment. A

number of properties of a modeled system can be analyzed through the application

of results in Applied Petri Net Theory.

6.1 Formalism for Firewall Mechanisms: Colored Petri Nets

This section introduces Colored Petri Nets (CPN) and Hierarchical CPNs (HCPN)

as a formalisms for �rewall mechanisms and �rewall systems. The section commences

with arguments why we chose CPNs as a formalism. We then present some limitations

of CPNs, introduce the graphical representations of CPNs and HCPNs, and explain

their equivalence relationship.
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6.1.1 Choice of Formalism: Colored Petri Nets

A Petri Net ([Pet62]) is a model expressed as a network of interconnected locations

and activities with rules that determine when an activity can occur and specify how

its occurrence changes the states of the locations associated with it. Petri Nets

have been used for the modeling and analysis of systems ([Pet81]). A considerable

body of theory exists ([PR91]) dealing with Petri Net properties, such as liveness and

reliability. Petri Nets have been developed over the years from a simple yet universally

applicable paradigm to various high-level and more complex but far more convenient

methodologies: one such example is Hierarchical Colored Petri Nets. Their formal

de�nition can be found in [Jen91] and [Jen96a].

The following paragraphs are a summary of features that CPNs possess and serve

as an overview (see [Jen95, Jen96a] for more details). CPNs promote problem-oriented

structuring of a system and make it possible to formulate and prove system charac-

teristics. They o�er hierarchical descriptions and are suited for modeling systems

of distributed control with multiple processes executing concurrently in time. CPNs

are asynchronous in nature without an inherent measure of time although a measure

of time has been added in various extensions. Nevertheless, one property of time

remains: a partial ordering of the occurrence of events. There are a large number

of formal analysis methods by which properties of instances of CPNs can be proved.

Computer support for complex analysis methods makes it possible to obtain results

that are impractical to achieve manually.

There are other formalisms that are at least equivalent in computational power

to CPNs, but not in regard to convenience. Similar arguments apply as in the choice

of the best programming language to solve a given problem.

6.1.2 Limitations

The original model of Petri Nets has several limitations that since have been

addressed by extensions to the basic model. For example, there is no way in Petri

Nets to test for zero occurrence of tokens in an unbounded place ([Pet81]). Although
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Petri Nets can be used for modeling systems at various levels of abstraction, in their

original form they can be di�cult to comprehend by humans, even when a system

is expressed at a high-level. Hierarchical Colored Petri Nets are one example of an

extended model which already deals with a subset of the original model's limitations.

Many known algorithms that operate on Petri Nets have high computational com-

plexities ([Jen96a, Ch.4,5]). As long as CPNs are only used for their expressive power

this limitation is not relevant. But several interesting properties of CPNs, such as

boundedness, or the absence of deadlocks, require the application of algorithms with

high computational complexity. High computational complexity, however, can still be

acceptable if it is su�cient to verify the properties in question infrequently and outside

of performance critical paths, such as at the time of design validation ([CLR90, Ch.2]).

Because of the high computational complexities for formal veri�cation of properties,

high-level formalisms have a disadvantage compared to low-level formalisms, such as

the originally de�ned Petri Nets ([You97]). Section 6.5 gives details on computational

complexities and analysis methods for CPNs. In general, low-level formalisms are a

better choice for the formal analysis of systems ([You97]). These capabilities are a

trade-o� for a greater expressiveness in high-level formalisms.

6.1.3 Colored Petri Nets

The CPNs presented in this dissertation use the following notation (cf. �gure 6.1).

They contain places (ellipses) and transitions (rectangles). Places (a.k.a. states) repre-

sent conditions while transitions represent actions. Places can contain instantiations,

called tokens, of structured data types, called colors (italic names next to places),

hence the name Colored Petri Nets. The distribution of tokens at places is called

a marking. The initial marking is determined by an initialization expression (font

helvetica expressions next to places; �gure 6.2). The marking (boldface font helvetica

expression next to places; �gure 6.2) for each place is a multi-set (cf. [Jen96a, x2:1]

for a de�nition of multi-sets) over the place's color set.
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FltrRequest dgramrP In

FltrPassed dgramrP Out

FltrDcde

[rf = filter acl 
 {dstip   = (# dstip (# iphdr d)),
  dstport = (# dstport (# tcphdr d)),
  proto   = (# proto (# iphdr d))}]

FltrPass [rf = FLTRPASS]FltrFail [rf = FLTRFAIL]

FltrDecided dgramdecdr

Audit audtrFG Audit

Secondary Page: IP Packet Filter

1‘d

1‘d

1‘{dgram=d,fltrrslt=rf}1‘{dgram=d,fltrrslt=rf}

1‘{dgram=d,fltrrslt=rf}

1‘(now(),r1(
   {fltrrslt=rf,
    iphdr =(# iphdr d),
    tcphdr=(# tcphdr d)}))

Figure 6.1 Example of a Colored Petri Net for IP packet �ltering

Places and transitions can be connected by directed arcs (arrows). Transitions

are enabled if there are tokens in all places associated with incident arcs. An enabled

transition can �re, if token values are bound according to relevant arc expressions

(typewriter expressions next to arcs) and the guard (typewriter expressions enclosed

in square brackets next to transitions) associated with the transition evaluates to true.

A transition �res by removing the required tokens from all places connected through

incident edges and by adding tokens to all places connected through emanating edges.

Arc and guard expressions may have a set of variables associated with them. The

substitution of values for variables can lead to their uni�cation if they have common
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instances. In CPNs the binding of values to these variables is equivalent to their

uni�cation ([Set90, x8:2]).

We use an extension ([Jen96b] and [Met93, Part 3]) of the programming language

ML (Meta Language; [Mil84, Wik87]) to de�ne colors, arc expressions, guards, and

code sections. ML is a strongly typed, high-level functional programming language

optimized for abstract data structure speci�cation and manipulation. The strong

typing forces designers to be speci�c about the data types of represented information

and ensures unambiguous interface speci�cations for the combination of CPNs. For

the manipulation and simulation of CPNs we use the Design/CPN software from the

University of Aarhus ([Met93]). It uses ML as the speci�cation language of choice.

CPNs can be speci�ed formally without a graphical representation: as a tuple

consisting of sets (color, place, transition, and arc sets) and functions (node, color,

guard, arc expression, and initialization functions), as in [Jen96a, De�nition 2.5]. This

method of speci�cation of CPNs is necessary for formal analysis methods by which

properties of CPNs can be proven. We chose a graphical representation of CPNs

over its set theoretic representation to graphically express the structure of modeled

systems.

6.1.4 Hierarchical Colored Petri Nets

Figures 6.1 and later 6.4 illustrate separate mechanisms that are used to build

�rewalls. Firewalls consist of a set of mechanisms that collectively provide network

access control. Furthermore, they use external functions, such as authentication

header veri�cation, and external state, such as TCP connection state. For practical

reasons it is not desirable to create a single large CPN that speci�es a given �rewall

system in a at structure.

The concept of Hierarchical CPNs allows a designer to construct large CPNs by

combining a number of smaller CPNs. They are de�ned in [HJS91]. HCPNs can be

constructed top-down, bottom-up, or by a mixture of these two strategies. HCPNs
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make it possible to relate a number of individual CPNs to each other in a formal way,

and thus allow their formal analysis ([Jen96a]).

In top-down design one starts out with a simple high-level description of a sys-

tem without consideration of internal details. A speci�cation of detailed behavior of

the CPN is developed through stepwise re�nement ([Wir71]). Stepwise re�nement is

achieved through the application of a construct called substitution transition, where

a more complex CPN takes the place of a transition. The CPN must conform to

the interface of the replaced transition and relate identically to its surrounding arcs.

Transitions Packet Filter and Authentication Header are examples of substitution tran-

sitions.

In bottom-up design CPNs are combined into a larger net through fusion places.

A fusion place is a set of places that are considered to be identical. Even if they are

drawn as individual places they represent a single conceptual place. For each token

that is added (removed) at one of the places, an identical token is added (removed)

at all others. Places FltrRequest in �gure 6.1 and P1 in �gure 6.2 are a fusion place,

for example.

A non-hierarchical CPN is called a page. Figures 6.1, 6.2, and 6.4 contain pages.

A page that contains a substitution transition is called a superpage (e.g., �gure 6.2);

a page that contains the detailed description of the activity modeled by the corre-

sponding substitution transition is called subpage (e.g., �gure 6.1). A substitution

transition is also called a supernode. Note that the places connected to a substitution

transition by a single arc (called socket nodes) and their counterparts on the sub-

page (called port nodes) are fusion places. The interface between a superpage and a

subpage is de�ned through port assignments where socket nodes are related to port

nodes.
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P1 dgramr

1‘{iphdr={srcip="13.1.64.93", dstip="128.10.17.72", proto=PFTCP}, 
    ahdr=1407,
    tcphdr={srcport=39256, dstport=21},
    data="some ftp access data"} +
1‘{iphdr={srcip="13.1.64.94", dstip="128.10.17.72", proto=PFTCP}, 
    ahdr=1407,
    tcphdr={srcport=14392, dstport=23},
    data="some telnet access data"} +
1‘{iphdr={srcip="13.1.64.95", dstip="128.10.17.72", proto=PFTCP}, 
    ahdr=4711,
    tcphdr={srcport=41926, dstport=21},
    data="some ftp access data"}

P2 dgramr

P3 dgramr 1

1‘{iphdr = {srcip = "13.1.64.93",dstip = "128.10.17.72",proto = PFTCP},
     ahdr = 1407,
     tcphdr = {srcport = 39256,dstport = 21},
     data = "some ftp access data"}

HS ah#2
P3-

Authentication
        Header

Packet Filter HS pf#4
P2-

Primary Page: IP/IPSEC firewall

AuditFG Audit audtr

21‘(859680273,r1(
     {fltrrslt = FLTRFAIL,
       iphdr = {srcip = "13.1.64.94",dstip = "128.10.17.72",proto = PFTCP},
       tcphdr = {srcport = 14392,dstport = 23}}))+ 
1‘(859680273,r2(
     {vrfyrslt = VRFYFAIL,
       iphdr = {srcip = "13.1.64.95",dstip = "128.10.17.72",proto = PFTCP},
       ahdr = 4711,
       tcphdr = {srcport = 41926,dstport = 21}}))

1‘d

1‘d

1‘d

1‘d

Figure 6.2 Hierarchical Colored Petri Net for a simple IP �rewall consisting of an IP
packet �lter and IPSEC authentication header module.

6.1.5 Equivalence of CPNs and HCPNs

Any HCPN can be translated into a behaviorally equivalent non-hierarchical CPN

by replacing each substitution node with a copy of its subpage. This replacement pro-

cess may need to be applied recursively. The recursion is guaranteed to terminate

because a strictly hierarchical relationship between pages is enforced during construc-

tion. HCPNs are equivalent to CPNs, which means the theoretical modeling powers

of these two classes are identical. However, they have di�erent properties from a
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practical point of view: HCPNs allow a designer to cope with large systems because

of their concepts for structuring and abstraction.

6.2 Example HCPN for a Simple IP Firewall

This section describes an example �rewall that combines two �rewall mechanisms,

an IP packet �lter and an IPSEC (IP security working group) authentication header

module. We structure the description top-down, starting with the superpage.

The �rewall system modeled in �gure 6.2 is a superpage consisting of two com-

ponents: an IP packet �lter, and an AH (authentication header) module. Places P1,

P2, and P3 contain tokens of color dgramr that represent IP datagrams. The two

components are represented as substitution transitions, with the packet �lter from

�gure 6.1 being applied �rst. Each instantiation d of color dgramr in place P1 repre-

sents a datagram d that arrives at the �rewall. Note that d is a transmission unit as

de�ned in chapter 2 and d 2 lT. Once substitution transition Packet Filter �res, d is

removed from place P1. It is only added to place P2 if d is added to place FltrPassed

(�gure 6.1), a fusion place of P2, within the subpage.

Thus, only datagrams that pass the transition Packet Filter successfully can be

input to the transition Authentication Header representing the IPSEC AH �rewall

component. All datagrams that are added to place P3 therefore have passed both

�rewall components successfully and can be forwarded to their destination. Figure 6.2

depicts place Audit which models an audit function collecting audit events.

Remark. The meaning of arcs around substitution transitions, such as Packet Filter,

di�ers from the meaning of arcs around regular transitions. The set of arcs around

a substitution transition describes an interface of the substituted CPN rather than

a uni�cation of common instances that must occur. It means that datagrams that

are removed from place P1 because transition Packet Filter �res need not be added

to place P2. They are only added if they appear in the fusion place corresponding to

place P2.
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6.2.1 IP Packet Filtering

Figure 6.1 gives a CPN speci�cation of a typical IP packet �lter as described in

section 3.1.1. It models the invocation, �ltering decision, and decision enforcement

of a packet �lter.

Each datagram that arrives at the packet �lter is represented by a token of color

dgramr in place FltrRequest. In this example, a datagram (type dgramr) consists of

several possible types of headers (types iphdrr, ahdrr, tcphdrr) and a data portion

(cf. �gure 6.3 for the ML declaration of colors in this example). The header contains

a subset of the TCP/IP header �elds. It does not contain all header �elds as de�ned

in [Pos81a], but rather those that are necessary and su�cient to perform the packet

�ltering operation in this example. The header �elds are used by the packet �lter to

decide if the datagram is to be forwarded or discarded.

The transition FltrDcde is enabled whenever the marking of place FltrRequest

contains at least one token, i.e., whenever a datagram arrives at the packet �lter.

Variable d is then bound to the datagram values, which uni�es all occurrences of d

to this instance. The guard associated with FltrDcde uses function filter to apply

the access control list de�ned in acl (cf. �gure 6.3) against d and assigns the result

to rf (FLTRFAIL or FLTRPASS). Function filter takes two arguments: a list of

tuples containing patterns and their corresponding results (acl), and a pattern. It

returns the result corresponding to the pattern if found in the access control list, and

the default safe value FLTRFAIL otherwise. The access control policy for IP packets

is not encoded in the CPN model, but in acl. This CPN model merely describes a

mechanism for enforcing whatever policy is encoded.

Once transition FltrDcde is �red, d is removed from place FltrRequest. Datagram d

and its �ltering result rf are combined into a token of color dgramdecdr, a record type,

and added to place FltrDecided. Depending on the value of variable rf exactly one of

the two transitions FltrFail and FltrPass is enabled because both are guarded by mutu-

ally exclusive but collectively exhaustive expressions. Note that a guard expression,

such as [rf = FLTRFAIL], is no assignment but rather a test for equality: after the
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color  datat      = string;
color  ipt        = string;
color  portt      = int;
color  protot     = with PFUDP | PFTCP;
color  spit       = int;
color  ait        = int;
color  timet      = int;
color  iphdrr     = record srcip:ipt * dstip:ipt * proto:protot;
color  ahdrr      = spit;
color  tcphdrr    = record srcport:portt * dstport:portt;
color  dgramr     = record iphdr:iphdrr * ahdr:ahdrr * tcphdr:tcphdrr * data:datat;
color  fltrrsltt  = with FLTRFAIL | FLTRPASS;
color  dgramdecdr = record dgram:dgramr * fltrrslt:fltrrsltt;
color  spir       = record spidx:spit   * dstip:ipt * ai:ait;
color  dgramspir  = record dgram:dgramr * spi:spir;
color  vrfyrsltt  = with VRFYFAIL | VRFYPASS;
color  dgramvrfyr = record dgram:dgramr * vrfyrslt:vrfyrsltt;
color  fltrfailar = record fltrrslt:fltrrsltt * iphdr:iphdrr * tcphdr:tcphdrr;
color  vrfyfailar = record vrfyrslt:vrfyrsltt * iphdr:iphdrr * ahdr:ahdrr *
                           tcphdr:tcphdrr;
color  audtu      = union r1:fltrfailar + r2:vrfyfailar;
color  audtr      = product timet * audtu;

(*--------------------------------------------------*)
(*filter = fn : (’’a * fltrrsltt) list -> ’’a -> fltrrsltt*)
fun filter acl dgram = 
  lookup dgram acl handle exlookup => FLTRFAIL;

(*verify = fn : spir -> dgramr -> vrfyrsltt*)
fun verify (s:spir) (d:dgramr) =
  case (# ai s) of 
    42 => VRFYPASS |
    _  => VRFYFAIL;

(*now = fn : unit -> int*)
fun now () = tod ();

(*--------------------------------------------------*)
val acl = nil;
val acl = insert {dstip="128.10.17.72", dstport=21, proto=PFTCP} FLTRPASS acl;

(*--------------------------------------------------*)
var d  : dgramr;
var s  : spir;
var rv : vrfyrsltt;
var rf : fltrrsltt;

Figure 6.3 Example declaration of colors for the Colored Petri Net model of IP packet
�ltering and speci�cation of an access control list for IP packet �ltering. Access to
host 128.10.17.72 is granted for TCP on service port 21 (ftp). All other accesses are
denied.

�rst assignment to variable rf in the guard of transition FltrDcde all occurrences of

rf are uni�ed and assignment and test for equality are denoted by the same symbol

(=) although they are di�erent operations. Therefore, guards in CPNs are predicates

with side e�ects.
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In case transition FltrFail is enabled and consequently �red, �gure 6.1 models

information about datagram d being added to place Audit. This process can be

interpreted as the datagram being discarded and details about the denied access

being logged. The place is included to be able to collect information about discarded

packets for auditing purposes as well as the validation of the behavior of the packet

�lter itself. If transition FltrPass is enabled, then d is added to place FltrPassed. Place

FltrPassed is the �nal place in this CPN. Each datagram in a marking of FltrPassed

can be forwarded towards its destination.

6.2.2 Modeling the IPSEC Authentication Header Module

This section serves three purposes. It gives a second example of a CPN �rewall

mechanism (the IP Authentication Header as de�ned in [Atk95b]), it demonstrates

how to build a CPN model for it, and it demonstrates how the model interacts with its

environment in an abstract manner (e.g., through use of external state or execution

of external functionality).

Section 4 of the IETF (Internet Engineering Task Force) standard document for

the IP authentication header ([Atk95b]) speci�es the procedure a module must per-

form to verify the authentication header in a received IP packet1:

``Upon receipt of a packet containing an IP Authentication Header, the

receiver first uses the Destination Address and SPI value to locate

the correct Security Association. The receiver then independently

verifies that the Authentication Data field and the received data

packet are consistent. [..]

[..] If the processing of the authentication algorithm

indicates the datagram is valid, then it is accepted. If the

algorithm determines that the data and the Authentication Header do

not match, then the receiver SHOULD discard the received IP datagram

1Note: SPI stands for security parameter index, an end-to-end security association.
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as invalid and MUST record the authentication failure in the system

log or audit log. If such a failure occurs, the recorded log data

MUST include the SPI value, date/time received, clear-text Sending

Address, clear-text Destination Address, and (if it exists) the

clear-text Flow ID. The log data MAY also include other information

about the failed packet.''

This procedure can be divided into 4 steps as follows:

1. Receipt of packet

2. Location of security association

3. Veri�cation of authentication data �eld

4. Enforcement of authentication veri�cation result

Figure 6.4 depicts the CPN for the AH mechanism. Step 1 is modeled through an

instantiation of color dgramr in initial place AhRequest. Place SpiDb models external

state: the set of established security associations. The lookup (step 2) of a security

association is achieved through the matching of the security parameter index �eld

present in the authentication header of datagram d against the spi index values in

members of the marking of place SpiDb. It is reasonable to model the repository

of security parameter indices (SPI) in this fashion because SPIs are established by

external procedures, such as manual con�guration or a key management protocol.

Key management mechanisms are used to negotiate parameters other than keys to

manage security associations.

The veri�cation of the authentication data �eld (Step 3) takes place in the guard

of transition AhVrfy similar to the way we modeled �ltering in �gure 6.1. Our model

contains a stub routine for the authentication header veri�cation (see function verify

in �gure 6.4). The datagram d is then assigned to place AhPassed if the outcome of

the veri�cation is positive. Subsequently, the enforcement of the result takes place

(step 4).
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SpiLkup

[(# spidx s) = (# ahdr d) 
 andalso
 (# dstip s) =
  (# dstip (# iphdr d))]

AhPassedP Out dgramr

AhRequestP In dgramr

AhSpiMatched dgramspir

AhVerified dgramvrfyr

AhVrfy [rv = verify s d]

AhPass [rv = VRFYPASS]AhFail [rv = VRFYFAIL]

SpiDbspir

1‘{spidx=1407,dstip="128.10.17.72", ai=42}+
1‘{spidx=4711,dstip="128.10.17.72", ai=43}

2

1‘{spidx = 1407,dstip = "128.10.17.72",ai = 42}+ 
1‘{spidx = 4711,dstip = "128.10.17.72",ai = 43}

Audit audtrFG Audit

Secondary Page: IPSEC Authentication Header Module

1‘d

1‘{dgram=d,spi=s}

1‘{dgram=d,spi=s}

1‘{dgram=d,vrfyrslt=rv}

1‘d

1‘s

1‘{dgram=d,vrfyrslt=rv}

1‘{dgram=d,vrfyrslt=rv}

1‘s

1‘(now(),r2(
   {vrfyrslt=rv,
    iphdr =(# iphdr d),
    ahdr  =(# ahdr d),
    tcphdr=(# tcphdr d)}))

Figure 6.4 Example IPSEC authentication header

In case the result is VRFYPASS, d will be added to place AhPassed and continue

on its path through the system. In case the result is VRFYFAIL, certain information

from d will be augmented by further data �elds, such as a time stamp, and added to

place Audit. This models the audit requirement as speci�ed in [Atk95b, x4].

The marking of place SpiDb in �gure 6.4 contains two examples of security asso-

ciations. The expression above the place is the initialization expression for the state;

the one below is its current marking. The particular values of these markings were

used in a simulation and are not of speci�c interest because they were chosen arbi-

trarily. Note that in this model the marking of place SpiDb will always be identical
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to the initial marking because a token that is uni�ed to s for the matching that takes

place in the guard for transition SpiLkup is returned to place SpiDb after transition

SpiLkup is �red.

6.2.3 Interpretation of Simulation Results for Example Firewall

val acl = nil;

val acl = insert fdstip="128.10.17.72", dstport=21, proto=PFTCPg FLTRPASS acl;

Figure 6.5 Example access control list. Access is only allowed to the ftp port (21)
on the host with IP address 128.10.17.72. (Excerpt from previous �gure 6.3.)

We used the designCPN ([Met93]) CPN software for simulations of this �rewall

model. Figures 6.1, 6.2, and 6.4 display the markings of the model when no more

transitions are enabled, i.e., after the end of a simulation. In �gure 6.2 place P3 has

instances of color dgramr in its �nal marking, and place Audit has instances of color

audtr in its �nal marking.

(*verify = fn : spir -> dgramr -> vrfyrsltt*)

fun verify (s:spir) (d:dgramr) =

case (# ai s) of

42 => VRFYPASS |

=> VRFYFAIL;

Figure 6.6 Example veri�cation function implementing the policy that only authenti-
cation information 42 is acceptable. More realistically, this function would be replaced
by cryptographic authentication code as implemented in our prototype. (Excerpt from
previous �gure 6.3.)
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The tokens that are part of the marking in place Audit recorded events where

datagrams did not pass the �rewall. The �rst token contains one audit record de-

scribing denied access enforced by the packet �lter because the access policy encoded

in the access control list acl allowed access only to the ftp port 21 (see �gure 6.5).

The second token in place Audit represents a datagram that did not pass the au-

thentication veri�cation because we simulated an authentication failure for security

parameters index 4711 and its bound authentication information 43. Only authen-

tication information 42 leads to a positive veri�cation result in function verify in

�gure 6.6. Finally, the token in place P3 passed both the packet �ltering and the

authentication veri�cation and reached the �nal state of the CPN.

The color of the audit place is a product type containing a time stamp and a union

type. The union type depends upon the type of the logged information. Events are

logged by adding an arc from the transition representing the event's action to an

audit place. In our example we used a fusion place for modeling the audit so that all

logged events are collected in the same place. Information present at a transition as

well as global state can be logged. Information (in contrast to events) does not need

to be logged at the earliest transition because it is represented in a natural way in this

model: instantiations of colors. It could be carried through the execution of a CPN

as part of a token. We do not postulate which information is logged at what place

in the net but we provide a method for modeling audit mechanisms. The research of

others addresses the question of content (see e.g., [Pri97]).

The example in section 6.2 and �gure 6.2 demonstrates the distribution of func-

tionality as desired in the reference model in section 5.3. The access control function

(ACF) is provided by the IP packet �lter, and the authentication and integrity func-

tions are provided by the IPSEC authentication header module.

6.2.4 Challenges of Modeling

We gave an example of how to model �rewall mechanisms in section 6.2.2. Cre-

ating CPNs is a task that requires human expertise and experience, similar to other
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modeling techniques. Jensen provides a number of guidelines in [Jen96a, x1:5] that

can help modelers to develop CPNs.

Designers need to understand the behavior of a mechanism before they can for-

malize it, which represents a problem if a given �rewall mechanism is o�ered as a

closed platform only. Designers can infer its behavior only through observation, mar-

keting brochures, and possibly reverse engineering. Possible mismatches between the

real �rewall mechanism and its functional description can be di�cult to detect.

One can imagine that vendors will provide formal descriptions of the behavior of

their products as a service to their (potential) customers. Using the tool, guided by

the formalism of the HCPNs, and using a library of generic �rewalls and speci�c CPNs

for �rewall components, we can provide a bene�cial design environment. Silva and

Valette ([SV89]) argues that catalogs of well tested subnets allow component reusabil-

ity, which in turn leads to reductions in the modeling e�ort. The availability of such

a library should encourage the adoption of HCPN technology by �rewall designers,

who would not need to create the models from scratch. This library would enable

designers to explore various �rewall designs using the available product formalizations

in a simulation environment.

6.3 Simulation

Once a �rewall mechanism or even a complete �rewall system is modeled, our

approach allows the simulation of HCPNs. Statistics of simulations can provide in-

sights about characteristics, such as timing constraints and capacity requirements and

simulation enables the exploration of various designs.

6.3.1 Testing

Simulation enables testing: for example, recorded sequences of datagrams can

be played back as input to a CPN simulator modeling the behavior of a �rewall

design under consideration. Sequences of datagrams representing attacks could be

constructed to determine how a �rewall design can handle them.
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This approach can be used not only to examine the behavior of the modeled

system but also to validate the enforced security policy. The approach is not su�cient

to prove correctness of a system, but can at best reveal errors, similar to software

testing ([Jen91]). There are a number of di�erent software testing methods. [GJM91,

x6:3] gives an overview of software testing and explains its theoretical foundations,

principles, and methodologies. Some of the methods used in software testing can be

applied here. An exploration of testing enabled through simulation is outside the

scope of this dissertation and can be subject to future research.

6.3.2 Performance Analysis

The performance of CPNs can be investigated through the use of Timed Colored

Petri Nets. Several extensions to CPNs to introduce time are possible. Jensen's

Timed CPNs are CPNs where places and transitions consume time and tokens are

augmented by a time stamp. Time stamps contain the time after which a token is

ready to be consumed by a transition. A global clock (discrete or continuous) keeps

track of the simulation time. Simulations in timed CPNs are run analogously to

discrete event simulations.

Values, such as \the average number of tokens in a given place" or \the average

waiting time of a token in a given place," can be determined by simulations in timed

CPNs. This approach is useful because analytical solutions through other formal

approaches, such as Markov chains, may not be usable because their equation systems

become too complex to solve ([Jen95]). The introduction of timing information can

result in in�nite occurrence graphs (see section 6.5.1) for systems that have �nite

occurrence graphs otherwise ([Jen95]). By specifying equivalence classes over the

time domain one can limit these in�nite occurrence graphs to �nite subgraphs for

which the dynamic properties and performance characteristics can still be determined

([Jen95]).
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6.3.3 Design Tool

Exploration of various designs is desirable because critical aspects of systems,

such as single points of failure, can be determined. Compared to prototyping, system

simulation is a low cost alternative for design exploration. Furthermore, this approach

is bene�cial over a white paper evaluation because dynamic properties of components

can be explored. Note that this approach is not speci�c to �rewall design, but system

design in general. McLendon and Vidale describe a similar approach in their research

on modeling and analysis of an ADA system in [MV92].

6.4 Automatic Generation of Firewall Code

An approach for \automatic" �rewall software development is to integrate design

and implementation similar to the integrated software development methodology de-

scribed by Pinci and Shapiro in [PS91]. Their case study describes the development

of a software application for electronic fund transfer. It was built for the Marine Mid-

land Bank of New York and Societ�e G�en�erale. The system requirement analysis and

speci�cation were done using SADT (Structured Analysis and Design Techniques); the

system design and veri�cation used HCPNs and the implementation was supported

with the automatic production of executable SML (simple ML; [Jen96b]) code by the

HCPN tools.

Applying this approach, there are a number of opportunities for optimization to

generate code, which have not been explored. Correctness and e�ciency of �rewall

implementations are of interest because �rewalls impose performance overheads for

communication tra�c on which they operate. In cases where correctness consider-

ations outweigh performance considerations, generated and less e�cient, but func-

tionally veri�ed code may be preferable over more e�cient code based on ad hoc

methodologies.

Brooks expresses scepticism about \automatic" programming ([Bro95, Ch.16]) in

all but application domains where problems can be characterized by relatively few
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parameters, where a library of methods of solution are known, and where analysis

has led to explicit rules for selection of solution techniques.

6.5 Analysis of Colored Petri Nets

The early detection of design errors in software engineering saves design time

and costs ([Bro95]). Jensen ([Jen96a, Ch.4,5]) lists a number of possible properties

of Colored Petri Nets that can be analyzed by informal or formal analysis methods

to detect such design errors. The properties are divided into static and dynamic

properties. Static (or structural) properties characterize CPNs without consideration

of possible occurrence sequences while dynamic (or behavioral) properties characterize

the behavior of instantiated CPNs. In general, dynamic properties are more di�cult

to verify than static properties, especially if one relies on informal methods. Formal

analysis methods for dynamic properties can be of high computational complexity

because they need to explore large combinatorial spaces.

6.5.1 Occurrence Graphs as the Basis for Analysis

Occurrence graphs are directed acyclic graphs (see [CLR90, x5:4]). Their nodes

represent the reachable markings of CPNs, and their arcs represent variable bindings

between nodes. Their construction is a partially decidable problem. An algorithm

exists that halts if and only if the occurrence graph is �nite. Otherwise the algorithm

does not terminate ([Jen95, Prop. 1.4]).

The possible state explosion of occurrence graphs is a known problem ([JK91,

MV92]). One can apply ad hoc reductions of occurrence graphs. However, those

reductions usually do not preserve the behavior and properties of the original model.

Jensen discusses in [Jen91, x4:2] a variety of approaches for the reduction of occurrence

graphs, such as by means of covering markings, by ignoring some of the occurrence

sequences that are identical, by means of symmetries, or by expressing states as

symbolic expressions.
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Even if the occurrence graph is �nite, its construction may still take a long time

because occurrence graphs are generally large. The size of the graphs is dependent

on several factors, such as the modeled problem or the required color sets and their

domains. For example, the number of nodes in the occurrence graph for the dining

philosophers problem as modeled in [Jen95, x1:6] grows as a Fibonacci series, i.e.,

N(n) = N(n � 1) + N(n � 2), where N(2) = 3 and N(3) = 4. The growth of

Fibonacci numbers is exponential ([CLR90, x2:2]).

The construction of the occurrence graphs is the dominant cost in the analysis

of dynamic properties of CPNs. Many algorithms of interest to us, such as those

described in [Jen95] that operate on occurrence graphs, are of at most polynomial

complexity. Therefore, the smaller the occurrence graph the lower the requirements

for computation time. There are methods that reduce the size of occurrence graphs

by exploiting symmetry and equivalence relations (see [Jen95, Ch. 2,3]).

6.5.2 Invariants

Consider predicates that may be applied to the states of a system. A predicate

is called an invariant if and only if it is valid in each state. Jensen explains the

theory and use of invariants in [Jen95, Ch. 4]. In CPNs there are place and transition

invariants, and they are applied in the following way: First, equations are formulated

that are postulated to be always satis�ed. Second, it is proven that the equations are

indeed satis�ed. Third, the equations are then used to prove some of the dynamic

properties of the modeled system (e.g., reachability, boundedness, home, liveness, and

fairness). Place invariants are interpreted as sums of tokens that remain constant with

the �ring of transitions. Transition invariants deal with repetitive �ring sequences.

Invariant analysis can prove structural properties of a CPN independent of its

marking. Invariants have an advantage over occurrence graphs insofar as they avoid

the possible state explosion.

Invariants over the number of datagrams in a net can be used to answer questions

about �rewall mechanisms, such as these:
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� Did all datagrams that reach one of the �nal acceptance states originate in

an authorized start state? A veri�ed invariant to that extent assures that no

transmission units that reach �nal states can get introduced into the �rewall

through means other than placement in initial states. In other words, �rewall

controls for accepted packets be bypassed.

� Do certain attributes of transmission units adhere to a desired functional re-

lationship? A �rst example of such a functional relationship is the identity

function. It can be used to ensure that attributes, such as destination machine

address and port numbers, do not change during net execution. A second exam-

ple is a function mapping internal addresses to externally visible addresses, such

as in network address translation (NAT) �rewall mechanisms (see section 3.1.2).

� Do all transmission units reach one of the de�ned �nal states representing ac-

ceptance or rejection? An invariant to that extent that holds would assure that

no transmission units can get lost in the �rewall implementation. Such a loss

would be interpreted by the outside world as a possibly incorrect rejection of

the datagram.

6.5.3 Static Analysis

Jensen de�nes in [Jen96a, x4:1] a set of static properties on arc expressions and

transitions. A static analysis of the type of CPN models that are generated by our

approach (e.g., in �gures 6.1, 6.2, and 6.4) reveals that all arc expressions are uniform

with multiplicity 1, all transitions are uniform, all transitions are conservative, all

transitions, except transition SpiLkup have the state machine property, the primary

page net in �gure 6.2 is open because it has places as border nodes, and all secondary

page nets are closed because they have transitions as border nodes.

The previous properties determine that the CPNs as constructed have a simple

structure. Most transitions are conservative with the state machine property because

they represent actions on single transmission units (for example datagrams). The
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transitions output single data items (for example a transmission unit augmented to

a compound data structure by a result of the action taken: record dgramvrfyr as in

transition AhVrfy).

Such a simple structure is preferable over a more complex structure because it

adds less complexity to the occurrence graph. As we argued in section 6.5.1, smaller

occurrence graphs are an advantage during the formal analysis of dynamic properties.

6.5.4 Dynamic Analysis

The dynamic analysis of CPNs explores properties, such as boundedness, liveness,

home markings, conservation, reachability, coverability, �ring sequences, equivalence

problems, and subset problems. De�nitions for these properties can be found in [Pet81]

and [Jen96a]. In the following we examine two of these properties in more detail:

boundedness and liveness.

Safety properties stipulate some bad condition never occurs during the execution of

a net. Examples of safety properties are boundedness, reachability, mutual exclusion,

and freedom from deadlock.

Bad conditions can be represented by an assertion, Pbad, which is mapped to true

in exactly those states in which the condition is true. Therefore, if the safety property

is true of a net, no occurrence sequence can contain such a state. Hence, the bad

condition happens at some particular point in the execution. For a safety property

to be true of a net, :Pbad must be a net invariant. One way to demonstrate a safety

property is to �nd a true program invariant I, so that I ) :Pbad. Another way

to express this idea is through the use of temporal logic ([Pnu77]). Temporal logic

introduces two temporal operators on assertions: 2 (always) and 3 (eventually). A

safety property can be expressed as: 2:Pbad.

The liveness property stipulates eventually some good condition Qgood will occur

during the execution of the net: 3Qgood. Owicki and Lamport ([OL82]) presents a

formal proof method based on temporal logic and proof lattices for deriving liveness

properties of concurrent programs.
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6.5.4.1 Boundedness

Upper (lower) bounds on places indicate the maximum (minimum) number of

tokens of a particular color that can be in that place at any given time. The simple

�rewall model in sections 6.2 has no upper bounds imposed on its places. In particular,

place Audit is not bounded.

The CPNs for the packet �lter in �gure 6.1 and the authentication header module

in �gure 6.4 are modeling mechanisms that are limited to processing one datagram at

a time. This restriction places upper bounds of 1 on all but the initial (FltrRequest and

AhRequest) and �nal places (FltrPassed, AhPassed, and Audit) of these CPNs. Places

that represent external state, such as SpiDb, are subject to their own boundedness

constraints.

One may need to specify that an event may happen only when a given condition

does not hold, i.e., when the corresponding token is absent. The attempt to match

a dgramr token to a spir token in transition SpiLkup in �gure 6.4 can serve as an

example. In the given model, if for a given token d no matching token is present in

place SpiDb, token d cannot make progress towards places Audit or AhPassed. To solve

the liveness problem in nets with unbounded places, Heuser and Richter suggest in

[HR92] to use complementary places. The initial marking of a complementary place

is the whole domain of the key of the token color to match. Tests for boundedness

can discover these conditions.

Boundedness constraints are also useful to model limited resources. Bounded

places imply �nite capacities. Determining �nite bounds of places can be used to

gather information about resource requirements at those places.

6.5.4.2 Liveness

Liveness in a CPN means that a set of binding elements remains active. Liveness

in a �rewall representation can be interpreted as: every possible datagram starting

out in place P1 will eventually reach a �nal state (representing acceptance or rejection
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of the datagram). This modeling approach implies that a datagram cannot disappear

between its entry to the net and its reaching the �nal state.

6.6 Chapter Summary

This chapter introduced our formalism for expressing �rewall mechanisms as well

as their composition. We argued that the formalism of Hierarchical Colored Petri

Nets (HCPN, short CPN) is suited for modeling a concurrent, distributed system with

regulated ows of information, such as a �rewall system operating on transmission

units.

We applied the formalism to a �rewall system consisting of an IP packet �lter

followed by the IP authentication header module. By doing so we introduced CPN

terminology and demonstrated how to model a network security mechanism given only

its verbatim speci�cation. We built the model in a modular fashion and demonstrated

how the hierarchical concepts of CPNs can be used to combine several mechanisms

into a comprehensive �rewall system. We learned how to model audit in CPN models.

After we developed a basic modeling technique, we used the Design/CPN tool for the

incremental building, syntax checking, and simulation of �rewall models.

We discussed how the simulation of �rewall models can be used for �rewall testing,

for performance analysis, and as a basis for a design tool exploring design alternatives.

We outlined how this formalism may be used for automatic generation of �rewall

software. Finally, we listed a number of static and dynamic (safety and liveness)

properties de�ned for CPNs that can be interpreted as desirable properties in the

problem domain of �rewall systems.
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7. AUTHENTICATED SIGNALING

In the previous chapters we presented a reference model for �rewall technology

and a formalism for expressing and analyzing the functionality of mechanisms used

to build �rewalls. The present chapter describes a concept that is applicable to

connection-oriented communication protocols: authenticated signaling. Mechanisms

that result from its implementation can be used as a building block in the construction

of �rewalls. Chapter 8 reports on the design, implementation, and exploration of a

realization of this concept for asynchronous transfer mode (ATM) signaling.

The concepts and terminology introduced by the reference model in chapter 5 are

used in the remainder of this dissertation to describe authenticated signaling and its

realization. The reference model guided the design and structure of the prototype

described in chapter 8.

The concept of authenticated signaling is an abstraction from a standards contri-

bution by Lyles ([Lyl94]). The original proposal in mid 1994 suggested that authenti-

cated user IDs and higher layer protocol addresses be made part of the requirements

for ATM connection signaling.

7.1 Motivation

The mechanisms traditionally used to provide �rewall security services (sec-

tion 3.1) are insu�cient in the presence of certain characteristics of high performance

networking technologies (section 3.4.1): high performance networking technologies

can have stringent quality of services requirements and data rates that prohibit pro-

cessing of data for security purposes during transmission. Such processing would

introduce unacceptable delays and delay variation ([PT97]).
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This problem is aggravated by the traditional �rewall paradigm that requires

security enforcement at, or close to, the network perimeter (section 3.1). Furthermore,

there is an expectation that the performance development of mechanisms operating on

data in transmission will continue to lag behind that of high performance networking

technologies for some time to come (section 3.4.2).

Therefore, the approach in our research is not to attempt to apply known �re-

wall security mechanisms at high speeds (as in [Hug96, SHB95, SBHW95, Chu96,

TPB+96, Pie96, PT97]), but rather to rely on changes to network architecture and

the development and use of a mechanism that was not previously used for this pur-

pose, authenticated signaling.

7.2 Architectural Design

Figure 7.1 illustrates the architectural design of authenticated signaling. It is

based on the idea that connection management protocols can provide the transport

service required for security protocol messages to be exchanged. They can be used

for at least two purposes:

1. to secure the connection management itself (signaling security), and

2. to provide basic security services that can be used by a variety of network

components (security signaling).

The application of the idea of augmenting a connection management protocol

to carry security information is not limited to ATM (for which it was proposed in

[Lyl94]). For example, the network working group in the IETF has developed a

mechanism at the network layer for providing cryptographic authentication of IPv4

and IPv6 datagrams (authentication header (AH); [Atk95b]). Interpreting TCP/IP

packets as transmission units (where the combination of IP header and TCP header

comprise the control information as de�ned in chapter 2), the AH addition to the

TCP/IP standards o�ers authenticated signaling functionality.
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Figure 7.1 Illustration of the architectural design of authenticated signaling. A con-
nection management (i.e., signaling) protocol is augmented by security functions (SF)
1.) to protect the signaling messages and 2.) to provide basic security services for
other network components. Authenticated signaling is one security control mecha-
nism that achieves both objectives.

7.3 Overview

We use an example to provide an overview of how the design can be used to reach

its objectives as given in section 7.2. Figure 7.1 depicts two hosts a1 and b1 connected

to an internetwork. We assume that a connection is required for applications appa

and appb running on host a1 and b1, respectively, to exchange data. Before application

data can be transmitted, the connection management system establishes a connection

on behalf of the initiating application (appa, for instance). Connection management

agents (CMA) may use services of security functions (SF) that participate in security

controls.
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1. To achieve the �rst objective, CMAs can use authentication and integrity as-

surance security services out of SF to sign and verify their own connection

management protocol messages.

2. To achieve the second objective, the connection management protocol messages

can convey security information on behalf of security protocols processed by

functions in SF.

7.4 Discussion

The concept of authenticated signaling has the following distinguishing features:

� Signaling security o�ers the authentication of communication endpoints, the in-

tegrity assurance of signaling messages, and protection against denial of service

threats (through the opportunity that only authenticated disconnect messages

may be accepted and acted upon). As such it can be used to provide the authen-

tication function (AF) on endpoint identi�ers and the integrity function (IF) on

signaling message contents as described by the reference model in chapter 5.

� Security signaling can provide, for example, authenticated information for net-

work access control decisions, or aid in the provision of data for the generation

of non-repudiable audit records.

� The mechanism of authenticated signaling is available to all entities that can

interface with the signaling protocol either directly or through intermediate

entities. Because higher layer entities can be authenticated by design, they can

communicate securely without a duplication of security functions at their layer.

� Authenticated signaling allows the authentication veri�cation at any interme-

diate connection management agent that has access to the appropriate security

function and cryptographic keys. That means the veri�cation is not limited to

an end-to-end enforcement.
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� The choice of communication endpoints is exible: any entity that can interface

with the signaling protocol can participate in the authentication. This elimi-

nates the need to process special cases for the authentication of entities based

on their role (for example \end" vs. \intermediate").

� The following list is a subset of the speci�cs that the concept of authenticated

signaling leaves to the time of its realization in a communication system: choice

of connection management protocol, choice of authentication protocol, choice

of private vs. public key cryptography, choice of unilateral vs. mutual authen-

tication of entities, choice of clock synchronization requirements, etc.

Some of these items are dependent on others. For example, the set of authenti-

cation protocols that can be used is limited by the number of messages exchanged

by the chosen connection management protocol. These issues are explored in the

following chapter in the context of ATM.

7.5 Chapter Summary

This chapter introduced a concept and its features that can be used to provide

�rewall security services in the presence of connection-oriented communication pro-

tocols. The mechanism is called authenticated signaling and can ful�ll at least two

purposes: it can secure connection management messages (signaling security), and

it can be used as a basis for a number of security services, such as network access

control or audit.
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8. AUTHENTICATED SIGNALING IN ATM

The previous chapter described the motivation, concept, and features of authenti-

cated signaling. This chapter focuses on its realization using the ATM (asynchronous

transfer mode) signaling protocol Q.2931 and a variety of authentication protocols for

experimentation purposes. A system is described that we developed to validate the

concept of authenticated signaling and its role in �rewall technology through a proof

of concept implementation and to expose and explore design issues. The reference

model as described in chapter 5 guided the design and structure of the prototype.

The chapter provides some background about ATM and Q.2931 before it describes

the software architecture of the prototype. It reports on the exploration of design

issues, such as the choice of authentication protocol and integrity assurance mecha-

nisms, issues of cryptographic paradigms, the importance of the number of protocol

messages, timing of authentication veri�cation, and clock synchronization.

8.1 Background

There are a variety of connection management protocols (for example, TCP

[Pos81c] or Q.2931 [ATM94, chapter 5]). Subsequent sections will describe our re-

search using the terminology from Q.2931. The remainder of this section introduces

technologies and terminology required for the understanding of this chapter: the asyn-

chronous transfer mode (ATM) (a networking technology that uses Q.2931), connec-

tion management concepts, and �nally Q.2931. The descriptions in this section are

compiled from the ATM user-network interface (UNI) Speci�cation ([ATM94]).
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8.1.1 The Asynchronous Transfer Mode (ATM)

The asynchronous transfer mode protocols were developed for use in broadband

integrated services digital networks (B-ISDN) to carry data, voice, images, and video

tra�c in an integrated manner. ATM is not limited to B-ISDN and contains physical

layer and network layer functionality. As of mid 1997 some aspects of ATM are

de�ned by interim standards developed by a user and vendor group known as the ATM

Forum [ATM96]. ATM provides for point-to-point or point-to-multipoint, connection-

oriented transmission of small data units. ATM gives quality of service guarantees

(i.e., it handles resource reservation, o�ers bandwidth and latency guarantees) to

support applications with special service requirements.

Before data can be transferred between machines a connection must be established.

These connections are called virtual channels (VC) and are identi�ed hop-by-hop us-

ing a virtual path identi�er and virtual channel identi�er pair (VPI/VCI). Data are

transferred in the form of cells with a 48 byte payload and a 5 byte header. Each

switch contains mappings of input to output VC identi�ers. VCs can be (semi-)

permanently installed (called permanent virtual circuits, or PVC) or established at

connection setup time by a signaling protocol, and released once the connection is

no longer required (called switched virtual circuits, or SVC). The switching of cells

involves the appropriate change of VC information in the cell header and a forward-

ing of the cell over the associated physical link. This operation can be executed in

hardware at high speeds. A switch controller is associated with one or more ATM

switches. It performs management functions, such as connection management, en-

abling or disabling ports, or polling for status information.

8.1.1.1 ATM Protocol Reference Model

A complete description of the ATM Protocol Reference Model is published in

[ATM94, chapter 1]. Figure 8.1 depicts an excerpt of the B-ISDN protocol reference

model. The planes in the �gure are the user plane and the control plane. The user

plane provides for transfer of user application information. It contains the physical
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Figure 8.1 Excerpt of the B-ISDN protocol reference model ([For94,�gure 1-4])

layer, ATM layer, and various adaptation layers for various tra�c types ([Par93,

x4:7]). The control plane protocols deal with call establishment, call release, and other

connection control functions necessary for providing switched services. It includes the

same lower layers as the user plane in addition to higher layer signaling protocols.

Figure 8.2 depicts two types of ATM networks: a private ATM network (man-

aged by the end user's organization) and a public ATM network (operated by net-

work service providers) interconnected by the public user-network interface (UNI).

Telecommunications carriers within the public network are connected via the broad-

band intercarrier interfaces (B-ICI).

The speci�cation for the public and private UNI is one and the same; the primary

distinction between these two classes is physical reach. There are di�erences between

the UNI and PNNI interfaces that are not relevant for our work. Signaling messages

exchanged over the UNI and the private network-to-network interfaces (PNNI) are

identical.
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Figure 8.2 ATM interface reference con�guration illustrating locations of private and
public user-network interfaces (UNI), private network-to-network interfaces (PNNI),
and broadband intercarrier interfaces (B-ICI). (Figure courtesy of Tom Tarman, San-
dia National Laboratories.)

8.1.2 Connection Management

If communications are based on a connection-oriented model, a connection must

be established before user data can be transmitted. We explained in section 8.1.1

that in ATM such connections come in two forms: permanent VCs and signaled VCs.

Permanent VCs are statically con�gured and installed into the switching tables of the

ATM switches. They are not subject to connection management. Signaled point-to-

point and point-to-multipoint VCs over an ATM network are dynamically established,

maintained, and cleared on a need basis utilizing a connection management protocol.

The B-ISDN broadband signaling standard ([ATM94]), is the connection management

protocol of choice.

At a conceptual level there is a division between the usage of connections and

their control and management. Figure 8.3 depicts our illustration of the separation

of network switching functions executed in the switching fabric (e.g., the forwarding
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management functions
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Figure 8.3 Generic switch architecture with separation of management and data
transmission functions

of cells over a VC) and management functions executed on the associated processor

(e.g., connection establishment and release). This separation is useful for securing the

control plane because it enables more general purpose processing power to be assigned

to cryptographic computations ([Chu96, x6:1]). Furthermore, it allows switching and

control technology to evolve independently.

The initiator of a connection can specify desired characteristics for the connection

and relies on Q.2931 to establish or to report the failure of establishment of a call.

Q.2931 neither supports any routing functionality nor provides for call acceptance or

forwarding policies.

Entities participating in connection management require an associated module to

process Q.2931 protocol messages. In �gure 7.1 these modules are called connec-

tion management agents (CMA). In �gure 8.4 we further distinguish between host

call control (hcc) and switch call control (scc) modules (in the following also called

processes), which perform signaling functions on the user side and the network side,

respectively.

Figure 8.4 depicts the interrelation among the switching processes and their re-

lationship to either ATM switches or end systems. The hcc and scc processes share

state of the local network con�guration, such as port identi�cation, routing informa-

tion, and address information for neighboring hcc and scc processes. This state can

be acquired through static con�guration or dynamic discovery and update protocols.

The establishment and release of calls is initiated by hcc processes. Applications
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Figure 8.4 Connection management protocols are distributed algorithms which in-
clude participation from end stations and network elements.

communicate with their local hcc process that in turn communicates with the inter-

networking sublayer and the Q.2931 module to coordinate their interaction regard-

ing o�ering, acceptance, and release of calls. Each hcc process exchanges protocol

messages with its neighboring scc process over the user-network-interface. The scc

processes are responsible for interfacing peer Q.2931 instances on the ATM switches

over the network-network-interface. They accept incoming call requests from other

scc or hcc processes and determine the outgoing port to be used when routing a call.

Routing information is accessed through a route manager on the ATM switch.

8.1.3 ATM Connection Management: Broadband Signaling Standard Q.2931

Figure 8.5 depicts an example of the Q.2931 message exchange to establish a con-

nection between an initiating sender and a target receiver. Each message consists of

a �xed and variable size part. The �xed size portion contains a protocol discrimi-

nator, a call reference, the message type, and the message length. The variable size
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Initiator (hcc) Network (sccs) Target (hcc)

SETUP

CALL PROCEEDING (opt)

SETUP

CALL PROCEEDING (opt)

CONNECT

CONNECT

CONNECT ACK (opt)

CONNECT ACK (opt)

Figure 8.5 Example signaling protocol: broadband signaling standard Q.2931 used
by ATM for connection establishment between initiator and target

portion contains a number of information elements (IE). There are a variety of IEs,

each for a separate purpose. They can contain information, such as an ATM tra�c

descriptor, ATM adaptation layer parameters, or a called party number. The set of

information elements in a message depends on the message type and is de�ned in

[ATM94, section 5.3-4].

The initiating process hcc starts the connection establishment by sending a SETUP

message. The SETUP message is received by the �rst scc process, optionally acknowl-

edged by sending a CALL PROCEEDING message, and forwarded towards the destina-

tion. Although �gure 8.5 suggests that the process receiving the SETUP message next

is the target hcc, there usually are several scc processes involved before the SETUP

reaches its destination. Upon receipt of the SETUP message the target decides to

accept the call or not. In the former case a CONNECT message is sent; in the latter

case the call is released by sending a RELEASE message. All scc processes involved
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in a connection establishment process may release or decide not to establish the con-

nection for a variety of reasons. Examples are the unavailability of bearer capability

or lack of routing information for the destination of the connection.

8.2 Development Environment

8.2.1 Hardware Environment

The ATM switches we used, called BADLAN, were built at the Xerox Palo Alto

Research Center (PARC). These switches consist of a switching backplane and up

to four boards with eight ports each (either TAXI or SONET interfaces). Switch

functions, such as the modi�cation of VC tables, are controlled by an external work-

station. The con�guration has reliability and exibility advantages. Hosts in our

experiments were SUN Sparc stations: IPC, IPX, and SS2. The network adaptors

used (called ParcNic) were also built at PARC. The experiments were performed over

multimode �ber with SONET encoding at OC-3c speeds (155 Mb/s).

8.2.2 Software Environment

The workstations operated under the SunOS 4.1.3 operating system. We imple-

mented a driver for the ParcNic card and used our implementation of Classical IP over

ATM for the experiments (see [SKS95] and [SSK98] for a description of our experiences

with classical IP and ARP over signaled ATM connections). The implementation of

the authenticated signaling required modi�cations to the signaling code. We used an

implementation of the ATM signaling protocol Q.2931 from Bellcore, called Q.port,

Release 1.2 ([Bel95]). In its �nal version the cryptographic protocols were imple-

mented using Bellcore's long integer package, called LIP ([Len95]). The generated

cryptographic key pairs were veri�ed with theMaple package (University of Waterloo,

Canada) and calc (Xerox PARC). We generated a set of 60 large (>1000 bits) and 10

smaller asymmetric key pairs and made them accessible to our prototype through a

key management database. We investigated further numeric multi precision integer
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packages from Robert Silverman, called MP ([Sil87]), the DEC Paris Research Labo-

ratories (PRL), INRIA in France, the Information Security Corporation, and the Free

Software Foundation (the GNU project). For our prototype LIP was the best overall

choice in regard to performance, documentation, licensing terms, and ease of use.

The drivers and authentication and access control services were implemented in

C and ANSI C. They are stateless servers that can also be run as daemons in the

background. The key bene�t of the stateless design was of a practical nature for

development and debugging because any service could be halted and restarted without

interruption of any instance of the programs that needed to interface with them (e.g.,

hcc or scc). The audit function AudF was provided by the UNIX syslog facility. The

modi�cations to the signaling code were done in C++. We used PERL, the Bourne

and tcsh shells, and Tcl/Tk as scripting languages for testing and building graphical

user interfaces.

8.3 Software Architecture

The following functions are present in the implementation architecture as depicted

in �gure 8.6. When we speak of processes in the following paragraphs we mean the

respective functions. We do not mean to imply that they need to be implemented as

separate instances of executable programs. We chose to implement these functions as

individual programs.

� app: Some application process using the integrated services network.

� hcc: The responsibilities of host call control processes are to coordinate the

establishment and release of calls between local and remote applications on

the host side. Such functionality involves interaction with the application (in

our case the ATM network interface card driver) and the signaling protocol to

coordinate their activities during the o�ering, acceptance, and release of calls.
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Public
Cloud

a1

A1
B1

b1

hcca

actldb

sccA

hccb

sccB

appb

appa

auditdBauthdBauditdAauthdA

auditdb

Process runs on machine
Physical network connection
Switch fabric control connection

Bidirectional IPC
Unidirectionl IPC
Signaling protocol exchanges

Figure 8.6 Example of a con�guration in the implementation architecture: connec-
tion establishment from application appa on host a1 to application appb on host b1.
Note that authdA performs the signing while authdB performs the veri�cation of the
information element.

� scc: Switch call control processes control switched virtual circuits on the switch

side. They coordinate the setup and release of point-to-point and point-to-

multipoint calls between Q.2931 interfaces. They handle requests for reserva-

tion, starting of data ow, and clearing of connections from the fabric control,

obtain routes for incoming calls, respond to error messages from Q.2931 and

the fabric control, and handle system initialization.

� authd: The authentication daemon provides an authentication service for con-

nection endpoints (see section 5.2.1) and an integrity service for signaling mes-

sages (see section 5.2.2). It is used for both: signature generation and signature

veri�cation.
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� actld: The access control daemon provides an access control decision service for

signaled connection establishment (see section 5.2.3), i.e. call admission control.

� auditd: The audit daemon provides a system logging facility (e.g., syslogd) (see

section 5.2.4).

The collection of hcc and scc processes at the various locations throughout the

network comprises the connection management; the collection of authd, actld, and

auditd make up the security controls as in �gure 7.1. Process authd is su�cient to

implement the security functions required for authenticated signaling. Processes actld

and auditd are included in this design to illustrate the use of authenticated signaling

for the second purpose (see section 7.2) and to follow the reference model for �rewall

technology (see chapter 5: actld is an example for an access control function ACF

and auditd for an audit function AudF.)

8.4 Interaction of Processes

8.4.1 Interaction of Processes: End to End

Figure 8.6 serves as an illustration for how the processes interact. Process appa

on host a1 attempts to send data to process appb on host b1. The two machines

are connected via two switches over a public cloud, where switch B1 represents the

perimeter switch of the network domain to which destination host b1 belongs. Appli-

cation appa communicates to hcca the request to establish an authenticated virtual

circuit to appb. This noti�cation can take place explicitly when appa informs hcca

directly as in the original design of Q.port or semi-transparently for the application

appa as in our design. In both cases a connection is established through the execution

of the distributed connection management algorithm (e.g., Q.2931) among the hcc

and scc processes along the path of the connection. Because the establishment of

an authenticated connection is desired, the hcc and scc processes interact with the

authentication and access control servers.
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Figure 8.6 can be seen as a snapshot of a system with two switches and several

connected hosts, where switch B1 serves as the perimeter switch. A more elaborate

scenario would include a cascade of perimeter switches for a given domain (networks

within networks), protected network domains on both the source and destination

sides, and secure multicast communication (i.e., not only point-to-point). This exam-

ple also depicts a distribution of services that o�ers scaling bene�ts as explained in

section 5.3. The authentication function is provided by authdB on switch B1, while

the access control function is provided by actldb on the destination host b1.

8.4.2 Interaction of Processes: Locally at Host

It is su�cient to augment a single protocol message, namely SETUP, to imple-

ment a unilateral authentication of the initiator of a point-to-point connection. As

discussed in section 8.8.6 there are various reasons to protect other connection man-

agement protocol messages as well. For an investigation of authentication mechanisms

it is su�cient to concentrate on one protocol message. The security services of mutual

authentication and group authentication (for example for point-to-multipoint or mul-

ticast) merely require an application of the same mechanisms to a variety of protocol

messages. We chose the SETUP message for the investigation.

Figure 8.7 (a) illustrates the interaction between applications and call control

processes in more detail. Case (b) in �gure 8.7 augments case (a) by interactions

with library functions and security control processes (authd in �gure 8.7). Data

streams are denoted by heavy solid lines, call control interactions are denoted by thin

solid lines, and connection management protocol exchanges are denoted by broken

lines.

Case (a) in �gure 8.7 depicts the arrangement of two user space processes (generic

application app and host call control hcc) and the TCP/IP and ATM modules in

the kernel of a host. If application app sends data to a remote destination to which

no connection is established, the data cannot be forwarded past the point indicated

by A : �rst, a connection needs to be established. Conceptually, the connection
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Figure 8.7 Interaction of components during connection establishment (a) without
authentication and (b) with authentication.

establishment is part of the ATM layer, but in our implementation the call control

processes are located in user space. This design requires the kernel to communicate

the need for a connection establishment to the hcc process (1 ) that in turn executes

the Q.2931 protocol to process the connection establishment request (2 and3 ). As

soon as the ATM layer is informed by hcc that the connection is established (4 ),

data can be transmitted atB .

In our design, the connection establishment process happens transparently to

the application. Connections are established on demand when data is present for a

destination to which no connection exists. They can be torn down based on a variety

of policies, such as \connection was not used recently."

Application app in �gure 8.7 (b) sends data to a remote destination, but in this

case it requires an authenticated connection. The authentication can happen trans-

parently to the application only if there is no requirement for the application to

provide cryptographic keys, such as if the kernel manages cryptographic keys on be-

half of applications or if the granularity of authentication is on a per machine basis.
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The application uses a library (lib) to facilitate the exchange of authentication infor-

mation and to request and release authenticated connections. Linn ([Lin93]) o�ers a

proposal for a generic security service application program interface (GSS-API) for

the establishment of security associations. A library is not required if the kernel

handles the authentication transparently.

Cooperation of applications is necessary if the authentication veri�cation depends

on authentication information that cannot be generated in the kernel. One-time

passwords, such as those provided by smartcard authentication tokens (for example

SecurID; [Rub96, x2:1]) or software solutions (for example S/Key; [Hal94]), serve

as examples. Case (b) in �gure 8.7 sketches our design where an application uses

library calls to establish authenticated connections to destinations. If an application

wants to send data over an authenticated pipe, it needs to request the authenticated

call setup �rst (1 ). The ATM module relays the request to hcc (2 ). Process hcc

contacts process authd for the creation of authentication signatures (3 and4 ) before

it engages in the distributed connection establishment protocol with its peer call

control processes (5 and 6 ). Once the connection is established (7 ) data can be

forwarded as in case (a) of �gure 8.7. A limited amount of bu�er space is available

between A and B . In our implementation we used BSD UNIX-style mbufs for

bu�ering IP frames. We did not experience bu�er memory exhaustion during our

experiments and testing. However, if much data is sent to the destination and there

is considerable delay before a connection is established, we expect that memory can

become a scarce resource.

The inter process communication (IPC) between the hcc/scc and the authd/actld/

auditd processes can be implemented in a variety of ways. For our prototyping ef-

fort it was su�cient to use blocking IPC over UNIX sockets. Because we chose

blocking IPC, no further Q.2931 protocol changes were necessary. The socket I/O

(input/output) had to be added in two places in processes hcc and scc: at time of

creation of outgoing SETUP messages, and at time of receipts of incoming SETUP
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messages. Module con�gurations as described in 8.6 determine if signature creation

or signature veri�cation actions need to be performed.

This design has the advantage that the authd process can perform its crypto-

graphic calculations directly on the signaling IEs without having to recreate them,

and it avoided a problem that occurs if the authd-type functionality is added too

low in the Q.2931 stack: that receivers can interpret normal message retransmission

as replay attacks ([PT97]). Our architecture can support a coexistence of several

authentication IEs within one signaling message (e.g., for various security levels) as

well as nested authentication.

8.5 Authentication Information Element

This section describes our design of a Q.2931 information element to convey au-

thentication (and access control) information between principals that participate in

the connection establishment process. We de�ne the authentication, access control,

and audit information element (aaaIe) according to section 5.4.5.1 and �gure 5-23 in

[ATM94].

Information elements are exchanged as an octet stream in the same format they

are handed to the signaling ATM adaptation layer (SAAL) for transmission to peer

signaling entities. Their format is de�ned in a standard's document ([ATM94]).

The information element represents one particular example of how one can en-

code the data. There are other possibilities, such as the ones described in [TPB+96,

section 8.1.1] and [LR97].

Table 8.1 lists the coding of the header of the aaaIe according to [ATM94, �g-

ure 5-23] as well as the space allocated for the body. In our prototype the body

consists of an octet array of up to 508 octets. This size was chosen to create an octet

array large enough to allow for experimentation with its contents. This prototyping

technique allowed us to transmit a block of octets transparently to the signaling pro-

tocol. At the places where the contents of the body need to be interpreted, the coding

structure (such as the example in �gure 8.2) is overlayed. Once the signaling protocol
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byte coding meaning

00 fe information element identi�er (0xfe is an arbitrary choice)

01 80 bit 8 ext=1

bit 7-6 = 00 - coding standard: ITU-T

bit 5 ag = 0 - in agreement UNI 3.1

bit 4 = 0

bit 3-1 IE action indicator = 000 - in agreement UNI 3.1

02-03 01 fc 0x01fc = 508d size of IE. Total 512 bytes.

04-1� xx xx 508 bytes available for the authentication value

Table 8.1 AAA information element | header and octet array for body

implementation was modi�ed to transmit the information element, we could re�ne

the contents of the information element gradually without having to interfere with the

running signaling protocol processes, minimizing the impact of our experimentation

on other uses of the network.

Section 8.8.5 presents four categories of information that are part of an authenti-

cation information element in our architectural design. The �elds in the body of the

aaaIe (table 8.2) are part of these categories as follows:

� Meta Information: version, protocol, hash alg., encryption alg.

� Algorithm Speci�c Information: nonce no, nonce time, and signature

� Identi�cation Information: the remaining �elds in table 8.2 were used for the

identi�cation of the participating principals. Fields labeled source... or

calling ... identify the sender and are used for source endpoint authenti-

cation.

Our choice of identi�cation information displayed in table 8.2 contains data

�elds which require \layer violations" for values to be assigned to them (e.g.,



103

name len type description

version 1 u char Version of this Ie layout

protocol 1 u char protocol identi�er

nonce no 4 long Nonce number

nonce time 8 long[2] Nonce Timestamp (NTP format)

hash alg. 1 u char hash algorithm used

encryption alg. 1 u char encryption (signature) algorithm used

destination NSID 1 u char destination name space identi�er

source NSID 1 u char source name space identi�er

destination ID 4 u int ID of receiver

source ID 4 u int ID of sender

destination GID 4 u int GID of receiver

source GID 4 u int GID of sender

destination socket 16 struct sockaddr Socket address of receiver

source socket 16 struct sockaddr Socket address of sender

called atm len 1 short ATM address of receiver

called atm addr 20 u char*

called sub len 1 short ATM subaddress of receiver

called sub addr 20 u char*

calling atm len 1 short ATM address of sender

calling atm addr 20 u char*

calling sub len 1 short ATM subaddress of sender

calling sub addr 20 u char*

signature 200 char[200] Cryptographic signature of above data

Total length � = 350

Table 8.2 AAA information element | example coding for body portion of aaaIe

destination socket). These �elds were chosen for our prototype and test

applications (see section 8.2.2 for a description). In a more general approach

one could use the BHLI IE as a means for exchanging high layer information

and as an encoding to be included into the signature.
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� Message (for integrity protection): the same �elds that were used as identi-

�cation information were also protected against modi�cation. Fields labeled

destination... or called ... identify the intended destination and can be

used in an access control decision.

We did not include other IEs of the Q.2931 protocol into the calculation of the

cryptographic signature. If one were to do that, IEs which need to be covered

by the signature would either have to be included into the authentication IE,

or there would have to be an encoding or a standard (specifying their selection

and order) to determine those IEs.

8.5.1 Information Encoding

All address and message �elds have an associated length �eld and contents are

padded with 0x00 to maximum length. Eventually, the same coding as for infor-

mation elements is likely to be used for data members senderid, receiverid, ...,

calling sub addr, but for our prototype it was su�cient to replicate the informa-

tion.

Timestamps ti are represented in the format of the network time protocol (NTP).

To quote the standard ([Mil92, section 3.1]):

\NTP timestamps are represented as a 64-bit unsigned �xed-point

number, in seconds relative to 0h on 1 January 1900. The integer part is

in the �rst 32 bits and the fraction part in the last 32 bits."

For portability reasons, we chose the exchange of information encoded in the

standard presentation format over its exchange in a customized encoding of internal

data structures native to the particular signaling implementation in use (e.g., Q.port).

8.6 Module Con�guration

Once the mechanism of authenticated signaling is available, security enforcement

becomes a con�guration issue. Figure 8.8 repeats the con�guration of the security
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AF
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IF
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Figure 8.8 Distribution of functional blocks

functions of �gure 8.6 at a more abstract level (in the notation used in section 5.3).

In this example the authentication (integrity) function at switch A1 creates the au-

thentication signature (digital signature, respectively) on behalf of principal a1. The

authentication and integrity functions at switch B1 verify authentication signature

and digital signature. The access control function (ACF) is performed at the end host

b1.

actldxcc xcc

auditdauthdauditdauthd authd

actldxcc

auditd

(a) (b) (c)

Figure 8.9 Module con�guration for AF (and IF), ACF, and AudF functionality at
process xcc, where x 2 fh; sg. AF and IF are implemented by authd, ACF by
actld, and AudF by auditd. (a) xcc invokes an authentication action (e.g., generation
of veri�cation of a digital signature). (b) xcc invokes an authentication veri�cation
action and requests an access control decision; (c) xcc requests an access control
decision without preceding authentication.

Figures 8.6 and 8.8 illustrate that the software modules for authentication and

access control can be con�gured in various ways. Figure 8.9 displays the three possible

con�gurations. Process xcc in �gure 8.9 can be replaced either by hcc or by scc.
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Case (a) displays a con�guration in which xcc communicates only with authd. This

con�guration could be on the sender or receiver side of the communication. Consider

a unilateral authentication in �gure 8.6 based on digital signatures. The location of

these processes determines if authd needs to perform the generation or the veri�cation

of digital authentication signatures. Server instance authdA needs to generate digital

signatures because it serves the initiator of the connection. The server instances

authdB and authdb verify digital signatures because they serve the target of the

connection. In a mutual authentication scenario authd processes can perform both

actions: generation and veri�cation.

Case (b) displays a con�guration in which both authentication and access control

are performed. In case (c) only the access control daemon is accessed. On the sending

side the access control check can be the decision if the local initiator is authorized to

make a connection which leaves the local network policy domain. On the receiving

side it can be the decision if remote tra�c is allowed to enter the local network policy

domain.

I: initiator side T: target side

(a) Generation of authentication and in-

tegrity information

Veri�cation of authentication and in-

tegrity information

(b) Combined generation of authentica-

tion and integrity information and

access control decision for connection

leaving network policy domain

Combined veri�cation of authentica-

tion and integrity information and

access control decision for connection

entering network policy domain

(c) Access control decision for connec-

tion leaving network policy domain

Access control decision for connec-

tion entering network policy domain.

Table 8.3 Summary of con�guration options
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Table 8.3 summarizes the various con�guration options. Independent of the con-

�guration, processes xcc, authd, and actld all have write access to the audit module

to log information according to the security policy in force.

8.7 Authentication Protocols

As we explain subsequently, augmenting Q.2931 with authentication and integrity

assurance can be achieved through the choice of an authentication protocol and the

transmission of one additional information element. Burrows, Abadi, and Needham

([BAN89] and [AN94]) document a number of authentication protocols in which aws

have been discovered and exposed after years of their use. Some of these aws were

so serious that the protocols could no longer be used for their purpose. [BAN89] and

[AN94] conclude that choosing an existing authentication protocol that is published,

that has been scrutinized for many years, and that has not been broken is preferable

over the attempt to design a new authentication protocol. By mid 1997 it is considered

\good practice" in system design to make the choice of cryptographic protocols a

parameter of the system using them (e.g., [AMP96, x1:3]).

The following sections describe and discuss two examples of authentication proto-

cols which are suitable for integration with the signaling protocol Q.2931 (appendix A

for a description of the notation of cryptographic protocols). The authentication pro-

tocol ful�lls the authentication function AF (of signaling endpoints) and the integrity

function IF (of signaling messages) as described by the reference model in section 5.1.

A variety of other authentication protocols are possible. They can consist of a combi-

nation of signature schemes, identi�cation schemes, and authentication codes ([Sti95,

chapters 6,9,10]). Two examples are used subsequently to explore design issues of

authenticated signaling.

8.7.1 Two Examples of Authentication Protocols

The �rst protocol is based on digital signatures, where a hash of the authentication

protocol message is public-key encrypted with the private key of the sender and sent
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together with the authentication message (see �gure 8.10). The second protocol is

based on keyed hashing (see �gure 8.11). Both protocols authenticate principal a and

ensure the authenticity and integrity of certain portions of the authentication message,

denoted by m. Table 8.4 lists the time stamps used in the example authentication

protocols. The veri�cation steps for both protocols are identical and are summarized

in table 8.5).

time t1 : a begins creating the authentication protocol message

time t2 : b has received the authentication protocol message

time t� : time window in which only di�erent sequence numbers are accepted

Table 8.4 Time stamps used in the example authentication protocols

8.7.2 First Protocol: Based on Signed Hashing

The �rst protocol is based on signed hashing, as used in IETF standards (for

example [BCCH94, x3:3:2] and an explanation in [KPS95, x9:2:4]).

8.7.2.1 Protocol

In this protocol (�gure 8.10), principal a, for example the initiator (i.e., claimant,

sender) of a connection, creates a message digest in step (1) that contains the identities

of a and b, timestamp t1, nonce na , and possibly other information, denoted here bym.

In step (2) a signs the hash value with his private key K�1
a
. Step (3) represents the

transmission of the signature and the original data. The transmission is done by

encoding this information for inclusion into the information element and transferring

it with the Q.2931 SETUP message. Step (4) illustrates that the receiver b needs to

look up the public key Ka of a before he can continue processing the authentication

veri�cation. Steps (5) and (6) could be exchanged because their order does not matter
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step src dst protocol message

(1) t1a : ha := H(m; t1; na ; a; b)

(2) a : s := fhagK�1
a

(3) a ! b t2 : (m; t1; na ; a; b; s)! (m�; t�1; n
�
a
; a�; b�; s�)

(4) b : lookup Ka

(5) b : hb := fs�gKa

(6) b : h�
a
:= H(m�; t�1; n

�
a
; a�; b�)

Figure 8.10 Protocol based on signed hashing

in this example. In either case, b needs to recreate a hash value of the received

information (h�
a
) and decrypt the received signature s� to prepare for their validation

(see section 8.7.4). The asterix as a superscript (�) denotes that values transmitted

over the network may have been modi�ed by an active wiretapper.

After successful execution of the authentication protocol, principal a has estab-

lished his authenticity with principal b (the veri�er/receiver) and assured the integrity

of data message m. The authentication message consists, for example, of a data mes-

sage, a timestamp, a sequence number, and identi�ers for the participants of this

protocol, a and b. The data message m can be empty if only the authenticity of a

is desired. If m is not empty, this protocol establishes its integrity upon successful

execution. For example, the data message can contain the �rst n octets of the �rst

IP packet for this connection and a combination of information elements. The exact

contents, coding, and layout of an example authentication message are presented in

section 8.5.

8.7.2.2 Assumptions

This protocol assumes that clocks between claimant and veri�er are synchronized,

that the private key of the claimant is not compromised, and that a secure public key
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infrastructure exists, such as [CCI88]. Ka , the public key of principal a is a public

value. It may be cached for improved performance for future connections with the

same initiator. Caching issues are outside the scope of this dissertation.

8.7.3 Second Protocol: Based on Keyed Hashing

The second protocol is based on Di�e-Hellman key exchange (see [DH76]). The

key generation is similar to the proposal for the Simple Key-Management for Internet

Protocols (SKIP) ([AMP96]).

8.7.3.1 Assumptions

It is assumed that the private values i and j of the sender and receiver and the

shared master key, once it is calculated, are not compromised, and that the public

values gimod p and gj mod p are authenticated public values. In addition to these

public values, the common secret master key Kij should be cached for future speedup.

8.7.3.2 Protocol

In steps (1) and (2) principal a generates the shared master key Kij in Di�e-

Hellman style. The session key Kijna is generated in step (3) the same way as proposed

in SKIP (see [AMP96, x1:2] for a discussion). K 0
ij denotes the low order 256 bits of

Kij. Step (4) illustrates the formula for authentication key generation (see [AMP96,

x1:9] for a discussion). The message digest ha is generated in step (5) di�erently

than in the �rst protocol (steps (1) and (2) in �gure 8.10). It does not need to

be encrypted. Rather the secret session authentication key KAuth is made part of

the input to the hash function. Short of breaking the hash algorithm, an active

wiretapper cannot generate a valid hash h�
a
for a forged message without the secretly

shared authentication key.

On the receiving side, principal b needs to generate the keys as did a before: Kij,

K�
ijna

, and K�
Auth (Steps (8)-(10)). Principal b recalculates the signature hb in step

(11) for later veri�cation (see section 8.7.4).
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step src dst protocol message

(1) a : lookup gjmod p

(2) a : Kij := gjimod p

(3) a : Kijna := H(K 0
ijjna j0x01) j H(K 0

ijjna j0x00)

(4) a : KAuth := H(Kijna jAuthAlgj0x03) j H(Kijna jAuthAlgj0x01)

(5) t1a : ha := H(KAuth; key�ll; m; t1; na ; a; b; KAuth)

(6) a ! b t2 : (m; t1; na ; a; b; ha)! (m�; t�1; n
�
a
; a�; b�; h�

a
)

(7) b : lookup gimod p

(8) b : Kij := gijmod p

(9) b : K�
ijna

:= H(K 0
ijjn

�
a
j0x01) j H(K 0

ijjn
�
a
j0x00)

(10) b : K�
Auth := H(K�

ijna
jAuthAlgj0x03) j H(K�

ijna
jAuthAlgj0x01)

(11) b : hb := H(K�
Auth; key�ll; m

�; t�1; n
�
a
; a�; b�; K�

Auth)

Figure 8.11 Protocol based on keyed hashing

8.7.4 Authentication Veri�cation

After the last step of either protocol is completed, principal b performs a number

of tests to verify the authenticity of principal a, and the authenticity and integrity

of the signed data message m. The authenticity of a and the integrity of m are not

established if a single test fails.

Principal b compares the two message digests h�
a
and hb. If they are not equal the

authenticity of a cannot be established. This comparison (1) can detect attacks, such

as active wiretapping. For the second protocol, h�
a
and hb are signatures, not merely

hash values.

The second test (2) allows principal b to release connection attempts which were

originally intended for a separate destination (see [Atk95a, section 6]).

Test (3) protects principal b against replay attacks. Connection attempts are only

accepted within a time window t�.



112

evaluates to true result

(1) (h�
a
6= hb) signature mismatch

(2) (identity of receiving node 6= b�) destination mismatch

(3) (t1 =2 (t2 � t�; t2]) timing violation

(4) (na has been seen by b in t�) sequence number mismatch

Table 8.5 Veri�cation procedure for authentication protocols

Principal b caches the tuples (x ; nx ) for each sequence number nx which was seen

in the last t� time. If b receives an authentication protocol message from a, b ensures

that na is not identical to any of the cached sequence number values for a: test (4).

This test allows for the concurrent execution of several instances of the authentication

protocol between two principals within a given time interval. Principal b does not

have to keep a history for each possible peer of the largest sequence number which

has been used in the past to prevent replay attacks. Principal b only needs to keep

sequence numbers in its cache that are valid within the most current time window of

length t�. (See [Ran93a, Annex F.1] for a discussion of unique number mechanisms

with on-line authentication certi�cates.) Under the assumption that principal a will

never reuse the same time stamp t1, the time stamp itself can be used as a nonce.

8.7.5 Other Examples

Three more examples of proposals for authentication protocols can be found in

[TPB+96] and [Tar97a]. Tarman et al. ([TPB+96]) describe a protocol based on the

digital signature standard (DSS) ([NIS94]). The ATM Forum proposes in [Tar97a]

two protocols based on the ISO/IEC standards 9594-8 and 11770-2.
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8.8 Exploration of Design

8.8.1 Public Key vs. Private Key Cryptography

The �rst protocol is based on public key cryptography, the second on symmet-

ric key cryptography. In the �rst protocol the veri�cation step can be performed

at various places in the course of the connection setup, e.g., at a signaling process

participating in the connection setup. This is because only public keys and no shared

secrets are required for veri�cation. This feature allows security policy enforcement

anywhere along the path of the connection, in particular at the network perimeter

and is one of the bene�ts that authenticated signaling o�ers over other methods. To

achieve the same characteristic with the second protocol requires the destination of

the connection attempt to share the master key with intermediate policy enforcing

nodes.

The second protocol has a performance advantage over the �rst protocol: in the

second protocol, the computationally expensive exponentiation operation has to be

performed only once per peer (protocol steps (2) and (8)), not once per connection

attempt because the master key Kij, once calculated, can be cached for future use.

This approach allows for smaller overhead in the connection establishment phase if

more than one connection originates from the same initiator. The use of hardware

devices for the computation of cryptographic functions can yield a speedup over

software solutions (for example, [Ebe92]). Peyravian and Tarman ([PT97]) discusses

further aspects of the trade-o�s between public key and secret key authentication in

ATM signaling protocols.

8.8.2 Clock Synchronization

Authentication protocols can be vulnerable to a certain class of timing attacks if

they are based on synchronized clocks and the assumption of clock synchronization

is temporarily violated (see [Yah94]). Both protocols assume the principals' clocks

to be synchronized. We consider this assumption to be reasonable because by mid
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1997 precise clocks have been considered standard components in computing systems

for several years. Secure network time protocols exist and are in widespread use.

SNTP ([Mil96]), for example, is capable of delivering time accurate to the order

of microseconds. Even larger clock drifts are acceptable as long as t� is chosen

accordingly. One should choose t� to be slightly larger than twice the maximum

round trip time between possible participants, plus the processing time required for

the execution of the applicable authentication protocol (for a discussion on the choice

of t� see [KPS95] or [Sti95]).

Resynchronization of clocks does not have to depend on authenticated connections

because the time signal itself can be authenticated by known mechanisms (see [Mil92,

Appendix C]). Therefore, we do not have to cope with a bootstrap problem to recover

the correct time in case clocks do lose synchronization, through, for example, system

failures.

8.8.3 Number of Protocol Messages

Note that both protocols require only one protocol message to be sent from the

initiator (a) to its peer (b) for unilateral authentication, which implies that two proto-

col messages (one in each direction) are su�cient for mutual authentication of unicast

tra�c. This feature enables the use of two-way handshake connection management

protocols for transport of the authentication protocol messages for mutual authentica-

tion (in contrast to a requirement for a three-way handshake for mutual authentication

based on a challenge response mechanism; [Yah94] and [KPS95, x2:4:4]).

The choice of which authentication protocol to superimpose on the connection es-

tablishment process depends on the number of messages required for the connection

establishment. Modifying the protocol message ow by adding, deleting, or rearrang-

ing protocol messages is a major change to a protocol. Such a modi�cation goes

far beyond our proposal of using the connection management protocol for transport

of security protocol messages. It is outside the scope of this dissertation. Stallings

presents an overview of authentication protocols for network security in [Sta95].
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8.8.4 Timing of Authentication Veri�cation

hcc scc hcchcc scc hcc

SETUP

SETUP

SETUP

CONNECT

SETUP

(a) (b)

Blocking in the critical path

Authentication verification processing

Figure 8.12 Illustration of blocking during serial veri�cation of the authentication
during ATM connection establishment. (a) The authentication veri�cation is per-
formed by an intermediate scc before the SETUP message can proceed towards the
destination. (b) The authentication veri�cation is performed by the destination hcc
before the CONNECT message is sent.

There are various opportunities for the veri�cation of an authentication protocol

message to take place. This section discusses the placement of authentication veri�ca-

tion and its implications for possible blocking in the critical timing path of connection

management protocols.

One possibility is to verify the authentication message before a SETUP is for-

warded to the successive scc or hcc process (see �gure 8.12 (a)), or, in case hcc

performs the authentication veri�cation, before a CONNECT is sent by the receiver

(see �gure 8.12 (b)). Both choices grant priority to security concerns because proto-

col processing is delayed until the outcome of the veri�cation is known. They have,

however, the disadvantage that the computationally expensive veri�cation step is in
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the critical timing path of every secure connection establishment. Alternatives are

available:

hcc scc hcc

SETUP

CONNECT

SETUP

CONNECT

data

data

Blocking in the critical path

Authentication verification processing

A

B

Figure 8.13 Illustration of veri�cation of the authentication after an ATM connection
is established, but before any data is permitted through the connection. An interme-
diate scc performs the veri�cation after the CONNECT message is sent. Any received
data needs to be bu�ered (atA ) until the veri�cation is completed (atB ).

� After receipt of the SETUPmessage the destination proceeds with the connection

setup as usual. The veri�cation will be processed only after the CONNECT is

sent (see �gure 8.13). Data received by the destination through the established

channel is queued and not forwarded to its destination until the veri�cation is

completed. If the veri�cation fails, the connection is released and the queued

data cleared. If the veri�cation succeeds, data that has accumulated in the

waiting queues is forwarded to its higher layer destination. This approach has

drawbacks: queue management requires additional resources and processing.

Furthermore, this approach is not feasible if intermediate switching processes
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are supposed to authenticate the source of a connection before a SETUPmessage

is forwarded into the guarded network.

hcc scc hcchcc scc hcc

SETUP

CONNECT

SETUP

CONNECT

SETUP

CONNECT

SETUP

CONNECT

(a) (b)

Blocking in the critical path

Authentication verification processing

Figure 8.14 Illustration of veri�cation of the authentication concurrently during con-
nection establishment. An intermediate scc starts the veri�cation after the SETUP
message is received. (a) If the result of the veri�cation is present by the time the
CONNECT message is received by scc no additional delay is incurred. (b) Otherwise
scc blocks until the result of the veri�cation is present before it sends successive
CONNECT.

� After receipt of a SETUP message, the intermediate verifying node initiates

the authentication veri�cation and processes it concurrently to the connection

setup. When the CONNECT message from the destination for this connection

reaches the verifying node, the authentication veri�cation process has either

been completed (see �gure 8.14 (a)), or not (see �gure 8.14 (b)). In the for-

mer case, the signaling protocol experiences no additional delay. In the latter

case, the signaling cannot proceed until the veri�cation process has �nished.

From then on, above discussion about the success or failure of the veri�cation

applies. The advantage is a potential decrease in connection establishment la-

tency through concurrent processing of the authentication veri�cation and the
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connection establishment protocol compared to the previously discussed ap-

proaches.

8.8.5 Authentication Information

The state and availability of a network can be a�ected by control plane mes-

sages. The integrity of all possible signaling messages, or a subset thereof, need to

be protected, depending on the level of assurance that is desired. For unilateral

authentication of a connection initiator it is su�cient to concentrate on SETUP mes-

sages. If mutual authentication is desired, CONNECT messages need to be protected;

if protection against denial of service through unauthorized connection clearing is

desired, RELEASE and RELEASE COMPLETE messages need to be protected; if protec-

tion of point-to-multipoint connections is desired, the according protocol messages

(ADD PARTY, DROP PARTY ACKNOWLEDGE, etc.) need to be protected.

To provide maximum protection, a signaling protocol needs to provide the capa-

bility of assuring the integrity and authenticity of all its signaling messages. Note

that our focus is on connection signaling: other services, such as routing updates, or

name resolutions are outside the scope of this analysis and have their own security

requirements.

It is not su�cient to sign signaling messages transparently as a whole: some parts

of signaling messages cannot be included in an end-to-end protection of messages

because they may be modi�ed by intermediate signaling processes which are not

capable of recalculating valid signatures. If such parts were included in the calculation

of the message digest, the destination could not verify the digest because it could not

recreate the message. Examples include information elements which are only present

at certain interfaces, such as the \transit network selection," and message header

�elds which may change, such as \message length." The purpose of the \transit

network selection" information element is to identify one requested transit network.

It can only appear at the UNI in the user to network direction. Once the \transit
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network selection" information element is removed from a signaling message by some

scc process, the \message length" needs to be decreased by its length.

We mentioned before that the security protocol message can be transmitted in

an information element. Based on our design, the following categories of information

need to be present in such an authentication information element:

� Meta Information. For example, authentication or hash algorithm identi�ers.

Meta information enables protocols to be independent of the choice of crypto-

graphic algorithms as motivated in section 8.7.

� Algorithm Speci�c Information. For example, nonces, timestamps, digital sig-

natures.

In addition there are two more categories of information necessary that do not

necessarily need to be transmitted in the authentication IE.

� Identi�cation Information. For example, source and destination ATM ad-

dresses, IP addresses, port numbers, user/group identi�ers (UID/GID).

� Message (for integrity protection). For example a set of information elements

present in a connection management protocol message.

Identi�cation information is required to identify the principal that is being au-

thenticated (and bound to the cryptographic keys used for his authentication). The

message whose integrity is to be protected is also necessary. Connection management

protocol messages, such as Q.2931, contain both these two categories of information,

so they do not need to be included in the authentication information element a second

time. There are cases, however, where they are only partially present: for example,

cryptographic keys can be bound to higher layer principals than the network inter-

face address that serves as the connection endpoint on their behalf. In that case a

veri�er requires more detailed identi�cation information than presented by the con-

nection management protocol. Abadi and Needham ([AN94]) presents a principal of

cryptographic protocol design that makes this point:
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\If the identity of a principal is essential to the meaning of a message, it

is prudent to mention the principal's name explicitly in the message."

The principle requests that the identi�cation information should appear in the

authentication information element if it is not explicit in the rest of the connection

management protocol message.

8.8.6 Protection Against Threats

The authentication of signaling messages allows the ATM control plane to ver-

ify the source and contents of a signaling message before acting on it. It therefore

protects the network infrastructure from a number of threats and possible attacks

([Den82, x1:2]), such as masquerading, active wiretapping, or denial of service. An

example of a denial of service attack is the sending of forged RELEASE messages for

established connections. In addition to this protection, authentication can be the

basis for services, such as non-repudiation and billing.

Threats of certain other types of denial of service remain present, even in the pres-

ence of strong authentication. For example, nothing prevents a culprit from starting

the connection establishment of a large number of connections without ever com-

pleting them. In some network protocols, such as TCP or unauthenticated Q.2931,

a culprit can even spoof the source addresses of authentication establishment mes-

sages and minimize the chance of discovery ([SKK+97, CER96]). Typically, protocols

rely on timeouts to recover from attacks as these. However, the timeouts were in-

troduced to recover from occasional network reliability problems and not to protect

against dedicated denial of service attacks ([SKK+97]). Available mechanisms are

not su�cient to protect against this class of attacks. In the presence of authenticated

signaling, another resource is under attack: the computation resource calculating the

veri�cation of the \authenticated" information elements. If authentication veri�ca-

tion becomes unavailable through a denial of service attack, legitimate connections

cannot succeed because their validity can no longer be veri�ed.
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8.8.7 Further Security Considerations

There are concerns by telecommunication service providers that additional infor-

mation elements potentially provide end users with free bandwidth: the ability of

transmitting data while avoiding billing charges. For example, a sender could encode

data in the authentication information element and attempt the establishment to a

destination with whom he colludes. The destination would retrieve the data received

in the authentication information element, but not establish the connection, and

thus avoid billing charges. Such fraud schemes are of concern to telecommunication

providers ([Lyl94, Lyl95]).

Research on covert channels shows that there is always an opportunity to transmit

data as long as a transport service is available, even in the presence of active counter-

measures ([OOS+97]). In the general case it is impossible for intermediate network

nodes to determine if a connection attempt failed because the called party was not

able to take the call or because of intermittent failures or security enforcement: there

is not enough information available to intermediate nodes to make this distinction.

Even if customers can be convinced that charging in the latter case is acceptable,

charging in the former case is a considerable deviation from practice in many years

preceding mid 1997 and �nancially disadvantageous for customers. We learned that

the ability to authenticate all incoming signaling messages can be so important to

some customers, such as national laboratories that require a high assurance of secure

communications, that billing surcharges become acceptable to them ([Tar97b]).

8.9 Experimental Con�gurations and Demonstrations

We used a variety of test con�gurations. Minimal con�gurations included one

switch and two hosts. The largest con�guration consisted of three switches and up

to six workstations. For our experiments we used two applications.

The �rst application was a client-server program which could be used to transfer

strings. This application was su�cient for a proof of concept. The second application
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was a popular network video application, called nv. To use our prototype, it was

necessary to add less than ten lines of code to the source code of nv, to compile it,

and to link it.

For a demonstration of our prototype at PARC we equipped several workstations

with cameras and used nv to transfer bi-directional video streams. The required

connections were established and released on demand over the ATM network. Con-

nection establishment was authenticated, rudimentary access control was performed,

and system actions were audited to syslog according to con�guration.

8.10 Performance Remarks

We have not included performance measurements detailing the e�ciency of our

implementation. The performance of cryptographic operations depends on a variety

of factors, such as the choice of algorithms, key length, message size, implementation

in software or hardware, exploitation of parallelism, and others. The particular com-

bination of choices we made in this multidimensional space were guided by the desire

to achieve proof of concept, functional correctness, and robustness.

Our implementation choices (for example the choice of programming languages

and the decision to use a software implementation for computationally expensive

cryptographic operations) are unlikely to match the choices designers would make for

a production system. Although we did not optimize for raw speed, we rarely expe-

rienced situations during our experiments where authentication protocol overheads

caused timeouts of Q.2931 timers, which in turn forces a retransmission of protocol

messages.

8.11 Chapter Summary

This chapter described the realization of the concept of authenticated signaling

in an ATM environment. The realization is a distributed system with interacting

processes for connection management, as well as authentication, access control, and
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audit processes for a variety of experimental authentication protocols. These services

are structured in the design according to the reference model in chapter 5. The

resulting mechanisms can be used as a �rewall security mechanism to address the

problems as described in section 7.1.

The choice of a layout for an authentication information element is central to our

implementation design. This chapter described the features of the authentication

information element we designed for use in the prototype. The system was imple-

mented, demonstrated, and explored as part of the Q.2931 B-ISDN signaling protocol

in a heterogeneous hardware and software environment.
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9. SUMMARY, CONCLUSIONS AND FUTURE DIRECTIONS

This dissertation presents a framework for �rewall technology within which �re-

wall systems can be designed and validated. It takes �rewall technology out of a state

where progress is made primarily through the reaction to the latest network-based at-

tack and advances it into a state of careful architectural design as a proactive approach

to network access control. This dissertation illustrates the potential of �rewalls as

network security devices that provide high assurance by design and implementation

rather than by ad hoc engineering.

As an overall framework we present the life cycle of a �rewall system in a fashion

similar to a waterfall model. Its phases are supported by several methods. The

following two methods are original contributions of this dissertation to the �eld of

�rewall technology:

The �rst method presented is a reference model for �rewall technology (chapter 5).

It was developed using historical research (through the examination previous work;

chapter 3) and an examination of the question: what functionality is desirable for

network access control, and what are its prerequisites? The reference model gives

designers an understanding of which functions are desirable in a �rewall system, how

they can be composed to build a �rewall system, how they interact, and how they

need to be enforced. The model is therefore descriptive and prescriptive. The model

does not specify how the functions are to be implemented. The essential components

of the reference model are authentication, integrity, access control, audit, and their

enforcement. The components can be deployed in a distributed fashion to achieve

scaling. A further advantage of their distribution is their improved overall availability

and protection through redundantly deployed mechanisms.
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The second method presented is a design tool for �rewall components and �rewall

systems alike (chapter 6). It is based on a formalism that uses Hierarchical Colored

Petri Nets (HCPN, short CPN) to describe the functionality of mechanisms used by

�rewall technology. HCPNs provide us with a theoretical framework and means of

description, composition, simulation, and analysis of �rewall systems.

Chapters 7 and 8 describe the concept of authenticated signaling and the design,

implementation, and exploration of its realization in ATM networks. Authenticated

signaling can provide �rewall security services and contribute as a building block to

the construction of �rewall systems. It is applicable to connection-oriented network-

ing technologies. It is based on the idea that connection management protocols can

provide the transport service required for security protocol messages to be exchanged.

Authenticated signaling can be used to secure the connection management itself (sig-

naling security), and to provide security services for a variety of other components in

a network (security signaling), i.e., to all entities that can interface with the signaling

protocol. Its services can be accessed at intermediate as well as connection endpoints.

The reference model from chapter 5 guided the design and structure of the realization

of authenticated signaling in ATM networks.

9.1 Experiences

The reference model illustrates an insight that we then con�rmed through ex-

perimentation with our prototype of authenticated signaling: network access control

services do not need to be provided at the network perimeter (the classical bottleneck

of �rewall systems) as long as they are enforced on each possible path between the

network perimeter and the target of the communication. We could observe the scaling

advantages of the latter approach in our experimental setup. This feature allows the

technology to remain applicable in high performance networking technologies. One

advantage of enforcing security at the network perimeter is that the network as a re-

source is protected against denial of service. Attacks that are blocked at the �rewall

might seal o� the protected network from the rest of the world, but communications
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within the network can continue to operate normally. The more security services are

moved closer to the targets of the communication tra�c and away from the network

perimeter the less the network is protected as a resource. The extreme point is the

scenario of what is popularly called \perfect host security" at the cost of no protection

of the resource network.

The reference model demands that certain security critical functions are performed

before communication tra�c reaches its target service. This requirement includes

enforcement by target services themselves ([Ran97]).

Likely future trends in computer networking are addressed by the model. It can

be applied to networking technologies, such as those required by wireless computing

(the di�culty here is the de�nition of the network perimeter) and high performance

networking as described above. We expect the reference model to have an educational

and a guiding inuence on the design of future �rewalls.

Communication content �ltering for protection against malicious down-loadable

code or access to censored material is possible in our approach, but still not a practical

concept. The reason for the latter is the possibility of defeating attempts to �nd

information that is hidden through mechanisms, such as encryption, compression, or

steganography ([Sch95, x1:2]).

A byproduct of our formalism is a new way in which audit is modeled. To the

best of our knowledge there is no widely accepted model for audit. Audit records are

represented as instantiations of tokens that have a certain color (data type). HCPNs

can model regulated ows of information, in particular audit data. Modeling audit is

therefore integrated with modeling the other parts of a �rewall system with HCPNs.

The strong typing mandated by the formalism enforces rigor about assumptions,

such as what information is present and usable at which places in the architecture.

Furthermore, strong typing ensures unambiguous interface speci�cations for the com-

bination of �rewall mechanisms.
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9.2 Future Work

The reference model in chapter 5 is limited to a single network policy domain.

An avenue for future research is the development of a model that allows us to argue

about the distribution and relationship of security policies and security services across

several network domains.

Section 6.5 on properties and formal analysis of Colored Petri Nets is a limited

investigation of what formal analysis can achieve and how �rewall representations can

be analyzed. We consider the following approaches promising for future research:

� A further investigation of the question of which desirable properties of �rewall

systems can be expressed as dynamic properties, which in turn can be veri�ed

mechanically for HCPNs. We conjecture that concentrating on invariants as an

analysis technique is likely to be a rewarding strategy. The use of invariants

avoids the problem of state explosion in occurrence graphs. Some of the prop-

erties that can be veri�ed would allow designers to gain additional con�dence

into the �rewall system under investigation.

� A search for behavior-preserving net reductions to avoid the state explosion of

occurrence graphs. Such a technique combined with the increased computing

power of future generations of hardware could be su�cient to make dynamic

analysis of HCPNs using occurrence graphs a computationally tractable option

for analysis. The same bene�ts as in the previous point apply.

� A search for more powerful tool support for the creation of a library of �rewall

mechanisms, the simulation of competing designs, and automatic veri�cation

of certain properties. These components would give designers the capability

to explore competing designs in an interactive fashion, which could result in

decreased development times and costs.

� An investigation of the question if this approach can become the basis for the

generation of executable \�rewall code" that ful�lls e�ciency requirements. The
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compilation of high-level descriptions into executable �rewalls would have many

of the same advantages and disadvantages that fourth generation programming

languages have compared to �rst generation programming languages. There

are potential advantages in respect to criteria, such as correctness, portability,

maintainability, or productivity, and disadvantages in respect to e�ciency.

� An investigation of issues in testing �rewall components and systems modeled by

HCPNs. An understanding of the extent to which testing can provide assurance

about security critical questions is potentially bene�cial to the con�dence in the

modeled system.

We consider the approach of automatic translation of a high-level description of

the �rewall into �rewall con�gurations another promising area for future research.

We expect a general high-level language for expressing security policies together with

its automated translation into low-level representations, such as packet �lter rules

that drive the security devices, could have a positive impact on practical computer

security. It would abandon manual mechanisms that are prone to error and enable

the automatic translation of security policies to a variety of enforcement mechanisms.

9.3 Summary of Main Contributions

� We introduced a framework for the following contributions in the form of a

waterfall model for the �rewall life cycle.

� We introduced and described a reference model for �rewall technology.

� We introduced a formalism for expressing the functionality of �rewall mecha-

nisms and �rewall systems. The formalism is based on Hierarchical Colored

Petri Nets. It can be used for graphical representation, simulation, and formal

analysis.

� We described the generalized concept of authenticated signaling.
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� We reported on the design, implementation, and exploration of a realization of

authenticated signaling for ATM signaling.

9.4 Conclusions

This dissertation has advanced knowledge in �rewall technology in several respects.

It has introduced a reference model for �rewall technology that has been applied

during the design of a �rewall security mechanism for ATM networks. We have

demonstrated how the formalism of Hierarchical Colored Petri Nets can be used to

describe, compose, simulate, and analyze �rewall and mechanisms that are used to

construct them.

Our prototype of authenticated signaling in ATM has shown that the signaling

channel of connection management protocols can be used to secure connection man-

agement protocol messages and to provide security services as a basic building block

for other components on the network, in particular �rewall systems. The prototype

demonstrated that �rewall technology is a viable approach to network access control

in high performance connection-oriented networks.
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Appendix A: Notation for Cryptographic Protocols

Principals participating in communication are denoted in lower case letters a or

b. Principal a usually plays the role of the initiator (sender), principal b the acceptor

(receiver) of a connection (data). If the role is not clear from the context the principals

are additionally labeled with their role.

Messages that are transmitted in packets are denoted by msg. Received messages

are labeled with a superscript asterix (�) to denote that the data might have been

changed during transmission by an active wiretapper. Times are represented by ti,

where the subscript i is used to distinguish between di�erent times. Numbers created

by principal x are represented by nx.

K is the symbol for encryption keys. If it is important whose principal's key it

is, we will add the name of the principal as a subscript, e.g., Ka. K and K�1 are a

public key pair with K�1 being the private key part. The same subscript rules apply.

Encrypted messages are surrounded by curly braces, with the subscript stating the

encryption key, e.g., fmsggK�1a
. Hash functions are abbreviated by H(). j denotes

concatenation.
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Appendix B: List of Acronyms

AAA Authentication, Access control, Audit

AAAIE AAA Information Element

AAL Atm Adaptation Layer

ACF Access (admission) Control Function

ACL Access Control List

ADI Admission/access Decision Information

AEF Access Enforcement Function

AF Authentication Function

AH Authentication Header

AI Authentication Information

API Application Program Interface

ARP Address Resolution Protocol

ATM Asynchronous Transfer Mode

AudF Audit Function

B-ICI Broadband InterCarrier Interface

B-ISDN Broadband Integrated Services Digital Network

BHLI Broadband High Layer Information

BSD Berkeley Software Distribution

CAM Content Addressable Memory

CCITT International Telegraph and Telephone Consultative Committee

CERT Computer Emergency Response Team

CMA Connection Management Agent

COAST Computer Operations, Audit and Security Technology
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CPN Colored Petri Net

CRC Cyclic Redundancy Check

CSI Computer Security Institute

CSL Computer Science Laboratory

CSMA/CD Carrier Sense Multiple Access w/ Collision Detection

DLL Data Link Layer

DMZ DeMilitarized Zone network

DNS Domain Name Service

DSS Digital Signature Standard

DTE Domain Type Enforcement

ESP Encapsulating Security Payload

FCS Frame Check Sum

GID Group IDenti�er

GSS Generic Security Service

HCC Host Call Control

HCPN Hierarchical Colored Petri Net

HEC Header Error Control

I/O Input/Output

ICMP Internet Control Message Protocol

IE Information Element

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IF Integrity Function

IP Internet Protocol

IPC Inter Process Communication

IPSEC IP SECurity

ISDN Integrated Services Digital Network

ISO International Standards Organization

LAN Local Area Network
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LATM Local area network ATM

LFSR Linear Feedback Shift Register

LIS Logical Ip Subnetwork

LLC Logical Link Control

MAC Medium Access Control

MAC Message Authentication Code

MD5 Message Digest 5

MTU Maximum Transfer Unit

NAT Network Address Translation

NBMA Non-Broadcast Multiple Access

NCSA National Computer Security Association

NHRP Next Hop Routing Protocol

NNI Network Network Interface

NTP Network Time Protocol

OAM Operations And Maintenance

OC Optical Carrier

OSI Open Systems Interconnection

PARC Palo Alto Research Center

PARCNIC PARC Network Interface Card

PDU Protocol Data Unit

PID Protocol Identi�er

PM Preventive Maintenance

PNNI Private Network-to-Network Interface

PVC Permanent Virtual Circuit

QoS Quality of Service

RIP Routing Information Protocol

ROLC Routing Over Large Clouds

SA Security Association

SAAL Signaling ATM Adaptation Layer
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SADT Structured Analysis and Design Techniques

SAR Segmentation and Reassembly

SCC Switch Call Control

SDU Service Data Unit

SKIP Simple Key management protocol for IP

SNTP Simple Network Time Protocol

SONET Synchronous Optical NETwork

SPARC Scalable Processor ARChitecture

SPI Security Parameters Index

SUN Stanford University Network

SVC Switched Virtual Circuit

TCP Transmission Control Protocol

TFTP Trivial File Transfer Protocol

UDP User Datagram Protocol

UID User IDenti�er

UNI User-Network Interface

VC Virtual Circuit

VCI Virtual Circuit Identi�er

VPI Virtual Path Identi�er

VPN Virtual Private Networking

WAN Wide Area Network

WATM Wide area network ATM

WORM Write Once Read Multiple
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