
Copyright c1997 Institute of Electrical and Electronics
Engineers. Reprinted from The Proceedings of the 1997
Symposium on Network and Distributed Systems Security.

This material is posted here with permission of the
IEEE. Internal or personal use of this material is permit-
ted. However, permission to reprint/republish this material
for advertising or promotional purposes or for creating new
collective works for resale or redistribution must be ob-
tained from the IEEE by sending a blank email message to
info.pub.permission@ieee.org.

By choosing to view this document, you agree to all
provisions of the copyright laws protecting it.

Misplaced Trust: Kerberos 4 Session Keys

Bryn Dole
Sun Microsystems

2550 Garcia Avenue
Mountain View, CA 94043-1100

bryn.dole@sun.com

Steve Lodin
Delco Electronics

One Corporate Center, MS CT200W
Kokomo, IN 46904-9005
swlodin@delcoelect.com

Eugene Spafford
COAST Laboratory

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907-1398
spaf@cs.purdue.edu

Abstract

One of the commonly-accepted principles of software
design for security is that making the source code openly
available leads to better security. The presumption is that
the open publication of source code will lead others to review
the code for errors. However, this openness is no guarantee
of correctness.

One of the most widely-published and used pieces of se-
curity software in recent memory is the MIT implementation
of the Kerberos authentication protocol. In the design of the
protocol, random session keys are the basis for establishing
the authenticity of service requests. Because of the way that
the Kerberos Version 4 implementation selected its random
keys, the secret keys could easily be guessed in a matter of
seconds.

This paper discusses the difficulty of generating good
random numbers, the mistakes that were made in imple-
menting Kerberos Version 4, and the breakdown of software
engineering that allowed this flaw to remain unfixed for ten
years. We discuss this as a particularly notable example
of the need to examine security-critical code carefully, even
when it is made publicly available.

1. Introduction

As we depend more on computing for critical tasks, the
security of those systems becomes more significant. Ob-
viously, a key component of the security for those systems
is the underlying software that may run with privilege or

regulate access. To develop a strong sense of trust in the un-
derlying systems, we must establish trust in the supporting
software.

One of the key principles of deploying trustable software
is the concept of open design. (see the principles described
in [21] as reprinted in [7], and the comments about “no
security through obscurity” in [9].) This principle states
that code — and especially security-critical code — should
not depend on the secrecy of the code or algorithm. Code
and algorithms can be accidentally disclosed or reverse-
engineered, so any security implied by keeping that secret
is transitory at best. Furthermore, the assumption is that by
publishing security-critical code, others can examine it for
flaws and gain confidence in the correctness of the code and
the strength of the algorithm.

Although this principle suggest a necessary condition, it
is not a sufficient one: It is also necessary that the code
be examined carefully and critically by trained observers.
Merely making source code available does not, by itself,
add any confidence in the underlying correctness of the code.
As noted in [6], even formal proofs of correctness require
critical review over time to gain any validity.

Unfortunately, having code available for public scrutiny
has often resulted in a false sense of security in that code by
its users. What is more, as time goes on, this sense often
increases — the belief is that if no problems have yet been
discovered, that the passage of time increases the likelihood
that no problems exist. Recent trends in software develop-
ment, where flaws are often discovered in software within
days (or hours!) of release on the Internet tend to exacer-
bate this overall problem with legacy software developed

and released in earlier times.
In the remainder of this paper we examine a particularly

notable example of this overall problem of misplaced trust:
the generation of “random” numbers in Kerberos 4. We will
begin with a review of the use of random numbers in secure
applications, and then discuss the problem in the Kerberos
4 implementation.

2. The Importance of Random Numbers

Random means that, among other things, it should be im-
possible to guess the next value based on knowledge of past
values. This can be achieved in a pseudo-random number
generator (PRNG) only if it is based on cryptographic prin-
cipals and is seeded with a sufficient amount of entropy, or
truly random information. A pseudo-random number gen-
erator is a function that generates a predictable sequence of
numbers that passes certain statistical tests for randomness.
True random number generators (RNG) also satisfy tests for
randomness but they are not predictable. For cryptography
it is desirable to use a truly random number generator, such
as one based on measurements of unpredictable physical
phenomena, such as radioactive decay.

The following are characteristics of a cryptographically
secure random number for secret keys 1. The sequence of
random numbers should pass standard statistical tests for
randomness. 2. The sequence should be unpredictable.
Knowing the algorithm and the previous sequence items
should not allow the next item in the sequence to be deter-
mined. 3. The sequence can not be reliably reproduced. If
the generator is run twice with the same initial conditions,
you will get two difference sequences.

The UNIX random number implementations rand,
random and lrand48 were designed to produce com-
pletely reproducible random number streams, violating
properties two and three of cryptographically secure ran-
dom numbers. These functions produce random number
sequences for statistical purposes, like random events in
computer simulations. They were never intended to gener-
ate cryptographically secure random numbers.

Examples of how to develop secure random-sequence
numbers are available in RFC 1750 [8], Knuth [13], Schneier
[22, pages 421-428] and Garfinkel and Spafford [9, pages
726-731].

2.1. Key Entropy

Entropy, in the cryptographic sense, is the amount of
information that a message contains [22, page 233]. The
entropy of a random key is the number of bits required to
represent all possible keys. Ideally, the entropy of a key
is equal to its length. In other words, every single bit is

completely random and independent of every other bit in
the key.

Entropy is the deciding factor in how difficult keys are to
guess. If the entropy is not equal to the size of the key, then
some keys are more likely to be chosen than others. This
statistical lack of randomness can be exploited to reduce the
average number of keys that have to be tested before the
actual key is found. For example, if there are 64 possible
keys, but only the even numbers are used, then the entropy
of any one key is only 5 bits (32 keys used is 2 5) even though
the key is 6 bits long, because the lowest order bit is always
zero. In this case, the number of keys that need to be tried
to guess the key by brute force is halved. This might seem
like an absurd example, but the UNIX random and rand
functions both leave the highest-order bit zero so that the
negative numbers are never returned, reducing the entropy.

2.2. Common Knowledge

While the computer security community as a whole con-
siders the need for good random number generators common
knowledge, the fact that this problem continues to appear
indicates that this is still a major challenge confronting the
cryptography community.

Little effort has been expended to make good random
number generators available to implementors of crypto-
graphic protocols. There is no standard mechanism in oper-
ating systems (OS), hardware, or applications for generat-
ing satisfactory, cryptographically strong random numbers.
While RFC 1750 [8] provides excellent advice on where
random information might reside on a computer, little prac-
tical information is given. In fact, nearly all of the suggested
sources of good random entropy are impossible to collect
on modern OSs. Everything that is a potential source of
randomness is insulated by abstraction and high level in-
terfaces. For some operating sustems this is more of a
problem than others. For example, the Java OS [17], takes
abstraction to the extreme. There is no way to access mem-
ory locations directly, all input/output is only done through
drivers written in Java, and there is no way to get direct
access to system statistics. The Java Platform [15] provides
yet another difficulty, this defines the minimal Java API that
can be safely assumed to exist on any Java machine. The
existence of hard drives, or other hardware that could be a
source of randomness cannot be presumed.

As suggested in RFC 1750 [8] the user is a good source
of randomness. People rarely exhibit deterministic behavior
and thus provide a good source of entropy. However, people
sleep even if their computers do not. If computers can only
get entropy from a user’s input, what is the computer to do
when the user leaves his terminal? Are random keys to be
more secure when the user is present at the keyboard versus
when the user goes on vacation for a week? What about

servers that never have users directly logged into them?
Or firewalls that implement virtual private networks? Most
firewalls are designed to not support direct user connections.
Or what about the Internet appliances of the future? These
devices will have very limited user interfaces. Should users
of the future be expected to open and close their refrigera-
tor door 1000 times while the refrigerator collects entropy?
User input is a limited resource that cannot be counted on.

Another method for producing secure random numbers
is to seed a PRNG with a local secret key. This is the heart
of the Kerberos Version 5 random number generator. This
works for Kerberos Version 5, because to guess the seed
(and thus the state) of the RNG one must first guess the
local secret key of the Kerberos server. Of course, if you
know the Kerberos ticket granting server (TGS) key, then
you do not need to be able to guess session keys, because
you can simply create your own tickets. Thus the RNG is
equally, if not slightly more secure than the TGS secret key,
which is as it should be. However, there is a bootstrapping
problem for this technique in general. What happens if the
master key, in this case the TGS key, is generated at random
using the same RNG? How is the RNG seeded? If there
is some other unsecure method for seeding the RNG, then
the master key is not truly a secret, and the whole system is
vulnerable.

2.3. Algorithm Analysis

While cryptographic protocols and encryption algorithms
are subjected to great scrutiny, RNGs rarely are. Protocols
are closely studied for weaknesses, and sometimes proven
to be secure. The use of random nonces and randomly
chosen keys are frequent component of such protocols but
their correctness is taken for granted. There are no formal
methods for analyzing the entropy of key data.

For example, Bellovin and Merritt examined several
problems in the Kerberos protocol in Limitations of the
Kerberos Authentication System [2]. These weaknesses in
the protocol included replay attacks, secure time services,
password-guessing attacks, and login spoofing. However,
they did not address issues of protocol implementation, such
as key randomness in their work. This excellent analysis of
the protocol, demonstrates the community’s focus on the
theoretical vulnerability of systems.

3. Introduction to Kerberos

Kerberos is a secret key network authentication protocol
[20] designed at MIT for Project Athena. It is based on
the Needham-Schroeder [18] authentication protocol. The
goals of Kerberos are authentication, authorization, and ac-
counting. Some of the protocol requirements are that au-
thenticationbe two-way, no cleartext passwords be transmit-

ted over the net, no cleartext passwords be stored on servers,
clients use cleartext passwords for the shortest time possible,
authentication have a limited lifetime, and authentication be
transparent to the user.

The basic “currency” of the Kerberos authentication pro-
tocol is a credential or capability known as a ticket. The
possession of a ticket and its accompanying session key de-
termines the ability to use a service. The protocol includes
the use of time stamps and identification strings (known
as authenticators) to prevent replay and man-in-the-middle
attacks. It also includes the ability to use encryption for
message authentication and message secrecy.

4. Kerberos Authentication Protocol

Kerberos is a trusted authentication protocol designed for
TCP/IP networks. The protocol is described in Kerberos:
An Authentication Service for Open Network Systems [23]
and Applied Cryptography [22, pages 566-571]. In the de-
scriptions below, the principal and the client denoted by C
are the user. The Kerberos server is also called the Key
Distribution Center and is denoted by KDC. The Ticket
Granting Server which grants tickets to service principals is
denoted by TGS. The service principals are services such
as file systems, printers, remote command execution (rsh),
remote login (rlogin) and e-mail gateways and are denoted
by S. The exchange between the client and the Kerberos
server is called the Authentication Service (AS). In the im-
plementation, the KDC and the TGS are integrated in the
Kerberos server process.

The following notation is used:

� Ka denotes a secret key owned by agent a.

� Ka;b denotes a session key shared by agents a and b.

� Ta;s is a ticket granting agent a access to service s.

� Ac is an authenticator containing the name of client c.

� fMgK is message M enciphered with key K.

4.1. Version 4 Protocol

The Kerberos Version 4 protocol consists of five steps in
which the client, C, communicates to the Kerberos server,
KDC, to get a Ticket Granting Ticket. It then communicates
with the Ticket Granting Service, TGS, to get a Ticket to a
service principal. Finally, it communicates with the service
principal, S. Figure 1 is a pictorial view of the authentication
protocol.

1. C ! KDC: c; tgs

2. KDC ! C: fKc;tgs; fTc;tgsgKtgsgKc

Kerberos

1
2

Client

TGS

3
4

5 Server

Figure 1. Kerberos Authentication Steps

3. C ! TGS: s; fTc;tgsgKtgs; fAcgKc;tgs

4. TGS ! C: ffTc;sgKs;Kc;sgKc;tgs

5. C ! S: fAcgKc;s; fTc;sgKs

The random session keys are Kc;tgs and Kc;s and the
ticket granting authority’s secret key is Ktgs. The ticket is
denoted by T and A is an authenticator.

5. Kerberos Session Key Generation

Kerberos makes use of random session keys for authen-
ticating transactions. Knowledge of these secret keys is
used as proof of identity and for verifying the authenticity
of messages. The secrecy of these keys is paramount to the
integrity of the Kerberos system. If one of the keys is com-
promised then anything authenticated by that key cannot be
trusted.

The following sections describe how and when the vari-
ous versions and implementations of Kerberos generate se-
cret keys.

5.1. Kerberos Version 4 RNG

The session key generation code is implemented in
src/lib/des/random key.c in the Kerberos Version
4 source code hierarchy. The random key.c code is
fairly straightforward. A pseudo random number genera-
tor is seeded each time a session key is generated with the
following information bitwise exclusive or’d (XOR):

1. time-of-day seconds since UTC 0:00 Jan. 1, 1970

2. process ID of the Kerberos server process

3. cumulative count of session keys generated

4. fractional part of time-of-day seconds since UTC 0:00
Jan. 1, 1970 in microseconds

5. hostid of the machine on which the Kerberos server is
running

Kerberos Version 4 uses the UNIX random function to
produce the random DES keys. Kerberos generates a ran-
dom DES key by first seeding the random number generator
with a seed chosen as outlined in above, then it makes two
calls to the random function to get 64 pseudo-random bits.
This 64-bit block has every eighth bit set as a parity bit,
leaving a 56-bit DES key. The random function relies on a
32-bit seed value to determine the state of the linear feed-
back shift register used for generating the pseudo random
numbers. The seed is composed as described above. Thus,
any sequence of numbers created by the random function, no
matter how long, relies solely on the 32-bit seed value. The
entropy of any number sequence produced by random()
has an entropy of only 32 bits. Likewise the Kerberos ses-
sion keys have an entropy of only 32 bits.

The only component of the seed that significantly changes
between successive key generations is the microseconds
value. This yields a key entropy of about 20 bits (10 6).
Other components such as the seconds, the cumulative count
of keys generated, and the process ID only affect the low-
order bits. Because these values are XOR’d together any
entropy that might have been gained from the other val-
ues is washed out by the microseconds value. Unlike the
low-order 20 bits, the first twelve bits rarely change and are
predictable. This can be seen graphically in Figure 2.

As a result of this poor choice in seed values, given
knowledge of the approximate time that a key was gener-
ated, there are only about 220 (or approximately one million)
possible keys.

6. Guessing Random Keys

This section describes the process of guessing Kerberos
random keys and discusses how to exploit these weak keys.

6.1. The Naive Brute Force Method

A brute force attack on a key is an exhaustive search
of all possible key values until the correct one is found.
Brute force attacks typically require a known plaintext and
ciphertext pair enciphered with the desired key. The known
plaintext is used to identify when the correct key is found.
Ideally, the size and entropy of the key is such that it takes
a very long time, on the order of 1010 years or more, to try
all possible keys.

Finding DES keys by brute force has been a hot topic
of discussion in the cryptography world. DES keys are

16 082432

����������������
����������������
����������������

����������������
����������������
����������������

�����������
�����������
�����������

�����������
�����������
�����������

����
����
����

����
����
����

����
����
����

����
����
����

����������������
����������������
����������������

����������������
����������������
����������������

������
������
������

������
������
������

����������������
����������������
����������������

����������������
����������������
����������������

�����������
�����������
�����������

�����������
�����������
�����������

����������������
����������������
����������������

����������������
����������������
����������������

����������������
����������������
����������������

����������������
����������������
����������������

�����������
�����������
�����������

�����������
�����������
�����������

����������������
����������������
����������������

����������������
����������������
����������������

������
������
������

������
������
������

Seed

32 Bits

Predictable Bits Unpredictable Bits

Key Count

Time (sec)

Hostid

Process ID

Time (sec)µ

Figure 2. Random Number Generator Seed

56 bits long and since the adoption of the Data Encryption
Standard in 1981, the time and expense required to discover
a DES key by brute force has been reduced to alarmingly
easy levels. For example, it is estimated that 56-bit keys
could be broken in an average of 3.5 hours with $1 million
of special hardware [3].

Kerberos uses DES for authentication and encrypting its
tickets and session traffic. Someone with enough computing
resources, as stated above, could brute force session keys in
about 3.5 hours, which is within the lifetime of these keys,
and use them. This assumes that the 56-bit DES session
keys are chosen completely at random and that the entropy
of the keys is 56 bits. In practice, Version 4 falls short of
this goal. Each session key has an entropy much smaller
than 56 bits. The result is that Version 4 keys are relatively
easy to guess using an intelligent brute force attack.

6.2. Brute Forcing Seed Values

The brute force method can be scaled down from 256

possible DES keys to the 232 possible seed values used to
generate the keys. This reduces the search by a factor of 224

(or roughly 17 million times). The weakness lies in the fact
that the entropy of the DES key cannot excede the entropy of
the seed value used to create it. Because the seed is only 32

bits long, the entropy of the resulting keys cannot be more
than 32 bits.

Estimated average time to search the 232 possible seed
values is about 28 hours on a SPARC 5 and 6 hours on a
DEC Alpha. Although 28 hours is longer than the 21 hour
lifespan of Kerberos tickets and the 5 minute lifespan of
the authenticators, it is still well within the lifetime of other
secret keys used by Kerberos services. If the seed itself is
not truly random, then the number of seeds that must be
tried can reduce the time to search the entire key space.

6.3. Educated Guessing of Seed Values

Trying to guess all possible 232 seed values produces a
tremendous savings in time over guessing a full DES key.
However, without resorting to using parallelizationor super-
computers, session keys and encrypted tickets will expire
before they can be successfully decrypted. The solution is
to exploit the lack of entropy in the seed values.

Table 1 gives the amount of entropy, in bits, that exists
in each component of the random seed. Because all the
nonpredictable bits are located in the low-order position of
each seed component and the values are XOR’ed together,
the total entropy of the seed is equal to that of the component
with the largest entropy. Figure 2 shows how the seed value
is formed.

Seed Component Insider Outsider
time (seconds) 0 0
process ID 0 � 10
number of keys 0 � 10
time (microseconds) 20 20
hostid 0 20
Total Unknown bits 20 20

Table 1. Entropy of seed components.

It is startling to observe that an inside attacker who has
access to the machine on which the Kerberos server is run-
ning does not gain any information about the seed value.
This is because the values of the process id, hostid, number
of keys generated, and current time are all obfuscated by
the time in microseconds value. Thus an outside attacker
that knows nothing about the machine running the Kerberos
server generating the keys is at no disadvantage when it
comes to guessing the final seed values.

The hostid is credited with 20 or fewer bits of entropy.
This is because the top 12 bits can easily be determined. If
the hostid value is not known, then the whole 32-bit seed
value must be brute forced once. With this seed value the top
12 bits of the hostid can be determined by XOR’ing the seed
with the time in seconds of when the key was generated.

This method takes advantage of the the low entropy of the
seed values used to generate the Kerberos keys. With only
20 bits of entropy in each seed, there are only 220 possible
seed values and therefore only 220 possible Kerberos keys
used. Searching this key space can be accomplished in
seconds on common workstations or PCs. Using this method
keys can be guessed sufficiently fast enough so that Kerberos
session keys will not have expired and can, therefore, be
exploited.

6.4. Precomputation Attacks

A precomputation attack can be used to reduce the time
for finding individual keys at the expense of some initial
computation and storage.

To launch a precomputation attack on Kerberos Version
4, all possible seed values are determined given the set of
conditions under which the targeted key will be generated.
With knowledge of the approximate time and the hostid of
the Kerberos server, only the low-order 20 bits of the seed
are unknown. This means that there are 220 possible seed
values that could be used to generate a key. Because changes
in the low-order 20 bits of the seconds value are obscured
by changes in the milliseconds value, this set of seed values
is valid for 220 seconds, or approximately 12 days.

All 220 possible keys are generated and used to enci-
pher a known plaintext. The known plaintext is the userid
of the targeted victim. The resultant encrypted blocks are
stored with their respective keys and sorted by the encrypted
blocks. Once a Kerberos transaction occurs on the network
that contains one of these encrypted blocks, we can discover
the key used by searching the table of preencrypted plaintext
blocks and reading out the respective key.

The storage requirements for some precomputation at-
tacks can be very large. For example storing all possible
DES encryptions of a fixed block requires over 1 billion
gigabytes of storage. However, in the case of Kerberos Ver-
sion 4 there are only about 1 million possible keys per 12
day period. Each entry in the lookup table needs only 12
bytes, 8 for the encrypted block and 4 for the seed value.
The entire lookup table can be stored in 12 Megabytes.

7. Results

This section describes the results from our work. Ta-
ble 2 shows the results (in seconds) for guessing Kerberos
Version 4 randomly generated keys. These results apply
to non-parallelized C code running on a single workstation.
The times and statistics presented here are the product of
successfully gathering Kerberos ciphertext and guessing the
DES session key of 400 different Kerberos authentication
sessions.

SPARCStation 5 DEC Alpha
(seconds) (seconds)

minimum 0:2 0:1
maximum 48:7 10:9

mean 24:8 5:5
median 24:8 5:5

standard deviation 13:9 3:1

Table 2. Statistics for guessing a single Ker-
beros key.

The majority of the time needed to guess each key was
spent performing DES decryptions of the ciphertext. All
DES operations were done in software, using the libdes
library. The tests on the DEC machine did not take ad-
vantage of the Alpha’s 64-bit architecture, suggesting that
faster times are possible with 64-bit optimized DES code.
Using hardware implementations of DES is another source
of potential performance improvements.

Regardless of what other optimizations that might be
made, these times for guessing keys are sufficiently fast to be
a threat to the security of any system depending on Kerberos
Version 4. However, a precomputation attack stands out as
an easy, low-cost method for improving performance.

7.1. Precompute Attack

Using the same database of about 400 randomly gener-
ated Kerberos keys used for testing the brute force method,
our average time to find one key using the precomputation
method was about 710 microseconds on a SPARCStation 5.
The time to generate the table of ciphertext and seed values
was approximately 2.5 minutes and sorting the table took
about 5 minutes (both values are for a SPARCStation 5.)
The time required for table generation and sorting is a cost
that only needs to be repeated once every 12 days when the
top 12 bits of the seed value changes.

8. Vulnerable Keys

Random numbers are used in Kerberos in many places.
They are used as randomly generated session keys to encrypt
traffic between the client and a Kerberos server. In addition,
the random numbers are used for random keys for principals
and servers in the Kerberos database. In particular, the
krbtgt and changepw principals have random keys. These
two principals play important roles in the administration of
the Kerberos authentication system. Compromising these
keys subverts the security of the whole system.

Any key that is created using the Version 4 random key
code is vulnerable to guessing. These keys include all ses-
sion keys generated by the KDC server and keys generated
for the initial Kerberos database. Weak database keys in-
clude the Ticket Granting Server’s secret key. This server
key is used to generate the Kerberos Ticket Granting Tick-
ets (TGT). Once the TGS key is guessed, that key can be
used to generate TGT to obtain access to any service that is
regulated by that TGS, including administrative commands
to the Kerberos server itself.

9. Exploiting Weak Keys

The discovery of the weakness in the implementation of
the Kerberos Version 4 random number generation under-
mines the security of the Kerberos authentication protocol.

9.1. Snooping Encrypted Traffic

When the session key between the user and the service
(Kc;s) is guessed, encrypted traffic between the user and the
server is vulnerable to snooping. Encrypted traffic that is
“sniffed” and saved is especially vulnerable to disclosure at
a later time, once the session key is guessed.

9.2. Masquerading as Another User

When the Ticket Granting Server secret key (KTGS) is
guessed, then valid Ticket Granting Tickets can be fabri-
cated without the step of client authentication to the Ker-
beros server. The Ticket Granting Ticket also contains a
session key (Kc;TGS) that is used to encrypt an authentica-
tor. These Ticket Granting Tickets can then be presented to
the TGS requesting access to a service that the user would
not normally be granted by the legitimate KDC.

10. Related Work

There have been other incidents of attacks on security
systems by exploiting weaknesses in the random number
generation routines. In addition, the available patches and
fixes from Kerberos vendors are listed.

10.1. Netscape SSL Random Number Guessing At-
tack

The Netscape SSL random number generation vulnera-
bility received a great deal of coverage in the media because
of Netscape’s high visibility. The publicity of this bug was
one of the motivations that prompted the authors to examine
the Kerberos RNG. The Netscape vulnerability was very
similar in nature to the weakness in Kerberos Version 4.

Netscape used known, deterministic components to seed the
random number generator. The Netscape SSL random num-
ber guessing attack as described by Goldberg and Wagner
[10]. More information is available on the World Wide Web
[5].

10.2. X11 MIT-MAGIC-COOKIE-1 Random Num-
ber Attack

The MIT-MAGIC-COOKIE-1 random number genera-
tion vulnerability was originally discovered by Chris Hall
[11] and was discussed in the Best-of-Security mailing list
[25]. This is another instance of a poorly implemented ran-
dom number generation routine used for security purposes.
In this case, the random number generator is seeded with
the time of day and the process id of the xdm client. Hall
also noted that if the DES routines were not compiled into
the X11 code, then for some operating systems only 256
possible random magic cookies are generated.

When the magic cookie is guessed, it can be added to
the attacker’s .Xauthority file (or wherever the attacker
keeps his magic cookies). This gives the attacker the ability
to connect to the display of the victim. At this point, any of
the standard X11 attacks can occur. These include killing X
server processes, faking input on behalf of the victim, and
even capturing the victim’s keystrokes (which might include
passwords).

11. Other Implementations of Kerberos

Kerberos has been widely successful and imitated. There
is a risk in copying the design of a system too closely, in
that the bugs can also be duplicated. For such an “obvious”
flaw, the RNG bug found its way into a surprising number
of Kerberos Version 4’s descendants.

11.1. Kerberos Version 5

A notable exception to the inheritance of the RNG bug is
Kerberos Version 5. The new version of Kerberos uses the
random number generator that was meant to be adopted by
Version 4 years ago. Instead of using the UNIX random
function, Version 5 uses the DES encryption algorithm as a
mixing function. The state from previous key generations is
kept as a seed for generating the next key. In addition, some
local information and the time of day is mixed in to add
to the entropy. What makes this random number generator
strong is that it is initially seeded with the TGS’s secret key.

One potential vulnerability of Kerberos Version 5 is the
Version 4 backward compatibility mode. This is not a prob-
lem though because the new RNG is used.

11.2. SESAME

SESAME is a European Community security project
that implements authentication and key exchange. It uses
the Needham-Schroeder protocol like Kerberos along with
public-key cryptography. According to Schneier [22, page
572], the SESAME key generation algorithmconsists of two
calls to the UNIX rand function, similar to the Kerberos
Version 4 algorithm. This yields the same upper bound of
232 possible values for the seed and resulting key. However,
SESAME documentation available on the Web indicates that
some of the SESAME components are accessible through
the Kerberos V5 protocol (as specified in RFC 1510), and
would use Kerberos data structures [14]. The architects of
SESAME explained that Schneier’s criticisms were based
on exportable versions of the code using XOR, not the real
code which uses DES encryption [16].

The random number generation code in SESAME V4,
recently released to the public, is more secure than as de-
scribed in Schneier’s book. The algorithm takes the time in
seconds, the process id, the number of clock ticks since last
reboot, some constants, and mixes them up using shifting
and exclusive or functions. This is then diffused through
MD5.

11.3. Cygnus Network Security

Cygnus Kerberos, also known as Cygnus Network Secu-
rity (CNS), is based on MIT Kerberos Version 4 and exhibits
the same vulnerabilities. Further exacerbating the problem
in CNS, for many platforms, the hostid command is not used
as a component of the seed. These platforms include Linux,
SCO, HP-UX, and Sun Solaris. When the hostid is not in-
cluded as a component of the seed, the only component that
determines the first 12 bits of the seed is the time in seconds
since 1970. Without the usage of the hostid, guessing the
key by an outsider is made easier by eliminating the need
to determine the hostid either by brute forcing the entire
seed value once to determine the top 12 bits or by social
engineering.

11.4. Other Commercial Versions

OSF DCE Version 1.1 contains Kerberos Version 5. Ven-
dors include HP, IBM, DEC, Open*VisionTechnologies and
Sun. Transarc claims their AFS product, which is based on
Kerberos Version 4, was fixed in 1990. They claim their
DCE and Encina products are not vulnerable to this key
guessing attack. CyberSafe sells primarily Kerberos Ver-
sion 5, but they also sell products based on Kerberos Version
4. CyberSafe claims they fixed the problem with Version 4
more than a year ago.

Another product built on the Kerberos Version 5 authen-
tication protocol is NetCheque [19]. It is being developed
at the University of Southern California Information Sci-
ences Institute. One of the primary developers is B. Clifford
Neuman who was also one of the primary developers of
Kerberos. Because it is based on Kerberos Version 5, it
does not suffer from a poor random number generator.

12. Patches and Fixes

Since the public release of information pertaining to the
Kerberos Version 4 random number generation vulnerabil-
ity, many vendors have released patches. MIT has re-
leased a patch that replaces all calls to the weak random
number generation routine with calls to the Kerberos Ver-
sion 5 random number generation routine. Instructions to
download the patch are available via anonymous ftp from
athena-dist.mit.edu in the /pub/kerberos di-
rectory. This will install changes to various Kerberos mod-
ules to upgrade them to use des new random key().
It also will install a new program, fix kdb keys. The
fix kdb keys program, which runs on the KDC server,
will update the krbtgt and changpw keys to new values using
the new random number generator. The only client program
modified is ksrvutilwhich is used to generate new server
keys. All other client/server programs are unaffected.

Cygnus has fixed their version of Kerberos Version 4
(Cygnus Network Security) and is releasing an updated dis-
tribution to their customers. The patched version uses the
secure random number generator previously distributed, but
never properly used. All randomly generated keys (includ-
ing session keys, and the krbtgt and changepw service prin-
cipal keys) now have more than 20 bits of entropy. Because
CNS is based on MIT Kerberos Version 4, the CNS patch
does the same thing as the MIT patch, except without the
fix kdb keys program. More information is available
from their Web site at http://www.cygnus.com.

HP has released a patch for their DCE product based
on Kerberos Version 5. This information is available in the
Hewlett-Packard Security BulletinHPSBUX9602-030 [12].

There are several solutions to the vulnerability we have
described. The most basic solution is to install the patch for
Version 4 and to make sure that all random keys generated
with the flawed random number generator are destroyed.
The next recommended solution is to migrate to Kerberos
Version 5, which does not suffer from the vulnerability out-
lined in this paper.

13. What Went Wrong and Why

It is surprising that the RNG bug in Kerberos Version 4
existed for so long. The cause is purely a social engineering

failure. The bug was known to the developers but somehow
never got fixed in the end product.

13.1. What Went Wrong

In 1988 Ted Anderson noticed that there was an alarm-
inglyhigh collision rate with keys generated by the Kerberos
RNG [1]. What he noticed was that after generating a table
of 170 thousand unique keys, every key generated after that
had approximately a one in five chance of already being in
the table. If one extrapolates these data one gets a key space
of only about 850 thousand (or 2 19:7) keys. This implies
that there are only about 19.7 bits of entropy in the each key,
very close to the 20 bits of entropy that were determined by
analyzing the RNG code.

One suggestion that Anderson made to fix this problem
was to initialize the RNG only once, instead of with every
call to the RNG, increasing the number of possible keys
generated to 231. This would force an attacker attempting
to guess Kerberos keys to keep track of how many keys had
been generated. This would actually decrease the entropy of
of the keys because the method for choosing the initial seed
was not changed. If implemented, guessing the entire key
stream would be only slightly harder than guessing just one
key from the old RNG. Thankfully, there is no sign that this
“fix” was ever introduced to the Kerberos source release.

It was not until a year later that new code was added to
improve the RNG. Even then, the problem was not solved.
While the new code was technically superior and much more
secure, it was never utilized. This new RNG was eventually
carried over to the new Kerberos Version 5 project and
correctly used, however in Version 4 the new RNG went
unused until 1996 when a security patch was released.

13.2. Why

Because code had been checked in that was suppose to
have fixed the RNG, everyone assumed that it worked. The
documentation supported this idea; there was a new module
called new rnd key.c and e-mail stating that the bug had
been fixed was posted to the Kerberos developers’ mailing
list. However, in actuality, the bug was still there.

The circumstances that allowed this to happen were a
breakdown in the social and software engineering processes.
In 1989, the Kerberos Version 4 project was drawing to a
close. People who formerly worked on Kerberos Version 4
development were migrating to the Version 5 project. The
code review and quality control processes for Version 4
simple broke down for lack of attention and staffing. Clearly,
no one attempted to verify that the fix worked, because if
they had they would have discovered that the old RNG
was still being used. To make matters worse, owners of
checked in code were responsible for getting their own code

reviewed. The owner of the RNG bug fix code was, for
some reason, unsuccessful in getting his new code properly
reviewed.

The perseverance of this bug can be attributed to several
factors including poor code legibility, obfuscated function
calls, and leftover dead code. Anyone who has looked at the
Kerberos RNG code, new or old, can testify that the code is
difficult to follow, despite the straight-forward algorithms.
To make matters worse the function names of the RNG are
renamed with a#define in one of the included header files.
Thus anyone searching for the name of the RNG function
would never find where it is called, unless they knew the
function had been renamed. Finally, the existence of old
legacy code made it possible for the incorrect function calls
to continue to work and go undiscovered.

13.3. Lessons Learned

The important lesson to be learned here is that software
engineering is important. If code reviews had been more
strictly enforced or regression testing had been performed,
this bug would have died back in 1989. Communication and
social skills are also important to the success of projects [4].
Perhaps if the communication between the writer of the new
random number generator and the rest of the development
team had been better, his code would have been reviewed
more carefully and installed properly. It is not sufficient to
have brilliant programmers that can write excellent code;
they must also possess the social skills to see that their code
gets properly integrated.

13.4. Timeline of Events

The following is a reconstructionof the timeline of events
surrounding the Kerberos Version 4 RNG problems.

� Sept 1988, Ted Anderson points out the problems in
the random key() routine [1]

� Jan 1989, John Kohl checks in the new RNG code to
the Kerberos source tree, but is never used.

� Mar 1991, Ted Ts’o encourages users of Kerberos to
review the source code [24]:

We encourage people to at least look over
the source code of what they FTP over; and
if they want to, they’re perfectly welcome
to perform a security audit over the code.

� Jun 1991, Kerberos Version 5 public beta is announced.

� 1992, Ted Ts’o makes the first reference to the new
RNG code in the get srvtab administration utility.

� Oct 1995, Steve Lodin rediscovers the usage of the bad
RNG in Kerberos Version 4.

� Jan 1996, Bryn Dole joins the team to write the code
exploiting the bad RNG.

� Jan 1996, Gene Spafford sends an e-mail to the COAST
sponsors about the potential vulnerability in Kerberos
Version 4.

� Feb 1996, Gene Spafford sends a similar e-mail to the
FIRST members.

� Feb 1996, various vendors start distributing patches to
fix the Version 4 RNG.

� Feb 1996, the Wall Street Journal prints an article about
the Kerberos Version 4 RNG weakness, followed by
many additional articles in trade magazines.

14. Conclusion

The method that Kerberos Version 4 used to generate
random keys for services and session keys was flawed. The
mistake was that the random number generator used was not
cryptographically secure. Pseudo-random number genera-
tors are not sufficiently random for secure keys because they
are too deterministic and predictable. This predictability
makes guessing keys from a pseudo-random number gener-
ator much easier than attempting to naively brute force the
entire key space. In the case of Kerberos Version 4, keys
can be guessed in seconds, allowing an attacker to make use
of the key and subvert the Kerberos authentication system.

Many security experts are proponents of forcing com-
puter security developers to open their algorithms, designs
and source code for review. Programs like PGP are available
in source form and some vendors have their code reviewed
by outside experts in the field. Still, many developers do
not in an attempt to protect their intellectual property or in
an attempt to seek security through obscurity. Peer review
might have caught some past implementation flaws, such
as the flaw in the Netscape SSL random number generator.
However, Kerberos serves as a testament that public peer
review is not a perfect solution.

During its lifetime Kerberos has been studied, modified,
cleaned up, and ported to a number of operating system sys-
tems. Public scrutiny is no substitute for structured code
reviews, good software engineering practices and quality
testing. More significantly, users should bear in mind that
public availability of source code does not imply public
scrutiny. Code that is badly structured, poorly written, fre-
quently modified, and insufficiently documented may not be
scrutinized at all.

While the Kerberos protocol, which is based on
Needham-Schroeder authentication, is fundamentally

sound, the Kerberos Version 4 implementation of the pro-
tocol was faulty. This suggests that the computer security
community may spend too much time validating algorithms
and too little time verifying implementations. This should
serve as a warning to security developers everywhere.

Also, contrary to popular belief, RNG vulnerabilities are
not old news. This problem is still with us and the more
we attempt to trivialize it, the more it will be overlooked
and come back to haunt us. Hardware and operating system
designers do not understand the need for good random num-
ber generators and do not implement them. Knowledgeable
cryptographers are then forced to make concessions to sup-
port portability and reliability of their code. Meanwhile,
designers oblivious to the nuances of the field of cryptogra-
phy are left to invent more poor RNGs or use the woefully
inadequate system calls that are provided them. Either way,
we are likely to see the past repeat itself until we have some
real random numbers provided at the operating system level.
The only way to do that is to add specialized hardware to
every motherboard or CPU.

We hope that by documenting this vulnerability, the
flawed design and the errors made when fixing the bug,
that this can serve as an example and warning. We hope to
raise the awareness of the importance that random numbers
and software engineering play in creating secure programs.

15. Acknowledgments

We thank Dr. Samuel Wagstaff for the instruction he
has given us in the cryptography classes while at Purdue
University. All the members of the COAST Lab, including
Mark Crosbie, Christoph Schuba, and Ivan Krsul, receive
our praise for providing support, endless reviews of this
paper and hours of riveting discussion. Kudos are also in
order for Susan Baldry, Martyn Perry and the many others
that took the time to help proofread this paper. Special
thanks to Sam Hartman, Clifford Neuman and Theodore
Ts’o for helping to provide the MIT side of the story, and
for their many technical comments on this paper.

References

[1] T. Anderson. random key(). http://www.mit.edu:
8008/menelaus.mit.edu/kerberos/487, Sept.
1988.

[2] S. M. Bellovin and M. Merritt. Limitations of the Kerberos
authentication system. In USENIX Conference Proceedings ,
pages 253–267, Dallas, TX, Winter 1991. USENIX.

[3] M. Blaze, W. Diffie, R. L. Rivest, B. Schneier, T. Shimomura,
E. Thompson, and M. Wiener. Minimal key lengths for
symmetric ciphers to provide adequate commercial security.
1996.

[4] F. P. Brooks Jr. The Mythical Man-Month, chapter Why Did
the Tower of Babel Fail? Addison-Wesley, Menlo Park, CA,
anniversary edition edition, 1995.

[5] L. Demailly. Netscape security (problems). http://
hplyot.obspm.fr/˜dl/netscapesec/, 1995.

[6] R. A. DeMillo, R. J. Lipton, and A. J. Perlis. Social processes
and the proofs of theorems and programs. Commun. ACM,
22(5):271–280, May 1979.

[7] D. E. R. Denning. Cryptographyand Data Security . Addison
Wesley, 1982.

[8] D. Eastlake, S. Crocker, and J. Schiller. Randomness rec-
ommendations for security. Request for Comments (Infor-
mational) RFC 1750, Internet Engineering Task Force, Dec.
1994.

[9] S. Garfinkel and G. Spafford. Practical UNIX & Internet
Security. O’Reilly & Associates, Inc, Sebastopol, CA, USA,
2nd edition, 1996.

[10] I. Goldberg and D. Wagner. Randomness and the netscape
browser. Dr. Dobb’s Journal , Jan. 1995.

[11] C. Hall. MIT-MAGIC-COOKIE-1 random number generator
problems. E-mail correspondence, Feb. 1996.

[12] Hewlett-Packard. Security Bulletin: HPSBUX9602-
030. http://us.external.hp.com/search/
bin/wwwsdoc.pl?DOCID=HPSBUX9602-030, Feb.
1996. Security Vulnerability DCE Security Service session
key generationn.

[13] D. Knuth. The Art of Computer Programming, Vol. II:
Seminumerical Algorithms . Addison-Wesley, Reading, MA,
1973.

[14] J. Kohl and B. C. Neuman. The Kerberos Network Au-
thentication Service (V5). Request for Comments (Proposed
Standard) RFC 1510, Internet Engineering Task Force, Sept.
1993.

[15] D. Kramer. The Java Platform. White Paper, Sun Microsys-
tems, Mountain View, CA, May 1996.

[16] J. Lebastard. Sesame security issues. E-mail correspondence,
Jan. 1996.

[17] P. W. Madany. JavaOS: A Standalone Java Environment.
White Paper, Sun Microsystems, Mountain View, CA, May
1996.

[18] R. M. Needham and M. D. Schroeder. Using encryption for
authentication in large networks of computers. Communica-
tions of the ACM, 21(12):993–999, Dec. 1978.

[19] B. C. Neuman and G. Medvinsky. Requirements for Network
Payment: The Netcheque Perspective. In Proceedings of
IEEE COMPCON’95. IEEE, Mar. 1995.

[20] B. C. Neuman and T. Ts’o. Kerberos: An authentication ser-
vice for computer networks. IEEE Communications Maga-
zine, 32(9):33–38, Sept. 1994.

[21] J. H. Saltzer and M. D. Schroeder. The protection of in-
formation in computer systems. Proceedings of the IEEE ,
63(9):1278–1308, Sept. 1975.

[22] B. Schneier. Applied Cryptography: Protocols, Algorithms,
and Source Code in C . John Wiley & Sons, Inc, New York,
NY, USA, 2nd edition, 1996.

[23] J. G. Steiner, B. C. Neuman, and J. I. Schiller. Kerberos:
An authentication service for open network systems. In
Winter 1988 USENIX Conference , pages 191–201, Dallas,
TX, 1988. USENIX Association.

[24] T. Ts’o. Re: Integrity of MIT source. http://www.mit.
edu:8008/menelaus.mit.edu/kerberos/1293,
Mar. 1991.

[25] Unknown. X11 mit-magic-cookie-1 random number weak-
ness. E-mail correspondence to the Best-of-Security mailing
list, 1995. Documents the X11 MIT-MAGIC-COOKIE-1
random number generator weakness.

