
A New Approach to the Specification of General Computer Security Policies

Ivan Krsul, Eugene Spafford, and Tugkan Tuglular
COAST Techical Report 97-13

COAST Laboratory�

Purdue University
West Lafayette, IN 47907–1398

fkrsul,tuglular,spafg@cs.purdue.edu

Abstract

The notion ofComputer Policyis fundamental to
the study of computer security models, the analysis of
computer vulnerabilities, the development of intrusion
detection tools, and the development of misuse detec-
tion tools. Security only makes sense in relation to
security policies that specify what is being protected,
how it must be protected, who has access to what is
being protected, etc. Policies are, however, difficult
to write, normally ambiguous, and difficult to under-
stand.

Existing policy specification models are not suitable
for most commercial off the shelf (COTS) systems. The
source code for the system may not be available, they
operate under constantly changing environments, and
the policy requirements may change frequently. Also
existing policy models do not capture the temporal
characteristics of many real-world computer security
policies.

In this paper we present a functional approach to
the specification of policies that allows their stepwise
refinement, such that at higher levels we deal with ab-
stractions and at lower levels with details. This ap-
proach takes advantage of the natural hierarchical or-
ganization of computer systems. We show that the this
approach can represent the most common policy mod-
els and practical real-world policies that are difficult
to represent with existing models.

�Portions of this work were supported by sponsors of the
COAST Laboratory.

1 Introduction

In [Lev94] Nancy Leveson argues that we have a
greater need to develop and validate the underlying
principles and criteria for design rather than to develop
greater numbers of designs. As we will see in this pa-
per, this notion applies also to the field of computer
security policy specification. We need to understand
the principles behind the specification of policies, the
impact that these may have on the design of operat-
ing systems, and the requirements necessary for their
enforcement. For example, given an arbitrary policy,
what kinds of auditing support do we need for the
detection of a violation of that policy? Current ap-
proaches such as C2 logging are cumbersome and do
not have enough information for the detection of many
events (for example, see [CDE+96, Pri98]).

The notion ofComputer Policyis fundamental to
the study of computer security models, the analysis of
computer vulnerabilities, the development of intrusion
detection tools, and the development of misuse detec-
tion tools [Den83, BB96, GS96, KS94]. Security only
makes sense in relation to security policies that specify
what is being protected, how it must be protected, who
has access to what is being protected, etc. Policies are,
however, difficult to write, normally ambiguous, and
difficult to understand[com96].

Existing policy specification models, however, are
either not expressive enough—in the case of models
such as MAC, DAC, Lattice—nor simple enough—
in the case of formal methods—to be widely used in
COTS systems. These systems are usually closed (i.e.
the source code is not available for modification), ex-

1 May 14, 1998

ceedingly complex, or dynamic. Also, existing pol-
icy needs do not capture the temporal characteristics
of many real-world computer security policies.

Policies cross the boundaries between program
specification, implementation, and operation. Existing
policy specification models do not cross these bound-
aries and as such program specification may not take
operational constraints into account, implementations
may not follow specifications, and operational envi-
ronments may not conform to these assumed environ-
ments at specification and implementation time.

Current operating systems try to enforce policies by
policy-specific mechanisms where possible. Some of
these mechanisms may fail due to flaws introduced
in the design or development, or because of environ-
mental or emergent reasons [AKS96]. In case of fail-
ure, the whole system may be affected. Examples of
such cases can be found in the computer security lit-
erature. [DFW96, MF97, MFS90, MKL+95, Bis95,
A+76, LBMC93, BD96, AKS96, Lin75]. Also, poli-
cies change faster than mechanisms can.

In this paper we present some solutions to these
problems. In particular, we present a functional ap-
proach to the specification of policies that allows the
stepwise refinement of policies, such that at higher lev-
els we deal with abstractions and at lower levels with
details. The model makes the explicit assumption that
policies and the value of the system or objects in the
system are related.

The proposed model takes advantage of the natural
hierarchical organization of computer systems, with
systems being composed of objects with attributes. It
expresses policies as algorithmic and mathematical ex-
pressions that help identify the axiomatic assumptions
made in the specification of the policy and that are well
suited for the development of program specifications.
The model encourages the stepwise refinement of the
policy, providing a natural mechanism for mapping
upper level policies to detailed specifications. Hence,
at higher levels of abstraction we don’t need to con-
sider all details and at lower levels of abstraction we
only consider the details but not the global picture.

In requiring that the policy specification explicitly
list the objects and attributes that are needed to enforce
the policy, the model helps to identify the components
that are relevant to the policy and hence provides a bet-
ter understanding of the policy and its impact in the

design of the operating system. It also helps identify
the information that needs to be logged to detect vio-
lations of this policy.

2 Notation

In this section we present the mathematical and al-
gorithmic conventions that will be used throughout the
paper. The notation is a simple adaptation of the nota-
tions used in [Coh90, Set89].

Function are specified by indicating the parameter
types, the return type, and the function body. If the
function returns a value, the function name is used as
a variable to assign the return value. The format for a
function is shown in equation 1.

Conditions and loops are possible and are indicated
by the if anddo keywords. The format of conditions
and loops is shown in equation 2.

By definition, the body of a loop is not executed
if initially the loop condition evaluates to false. One
line conditional operations are possible if the opera-
tions are followed by a condition. For example, a con-
ditional assignment would have the form:

x := S:o if S:o is a file;

Statements and conditions are general mathematical
expressions where the following special operators are
defined:

) Some text(The text inside the arrows should be
considered a comment.

^ The short circuit AND logical operator.

_ The short circuit OR logical operator.

8 The for all operator iterates over all the elements
of a set. For example, a loop construct such as
“8x 2 S do” would iteratex over all the elements
of setS.

2 The in operator tests for set membership.

:= Assignment operator.

::= Thedefinitionoperator is used to define functions
and terms.

2 May 14, 1998

Function Name: parameter type� � � � � parameter type! return type
fun Function Name(parameter name; � � � ; parameter name) ::=

Function Body Line 1;
...
Function Body Line n;

nuf

(1)

if Conditionthen Loop Condition do
Condition Body Line 1; Loop Body Line 1;
...

...
Condition Body Line n; Loop Body Line n;

fi od

(2)

j Thesuch thatoperator. It can be used as a qualifier
with the8 operator. For example, the expression
“8x 2 S j x 2 E” would iterate over all the
elements in setS that are also inE.

. A string comparison operator. The expressionx .

y would returntrue if the stringy begins with
stringx (x is a substring ofy starting with the first
character ofy).

Other operators, such as�; 6=;=; �; (;) ; ;, etc.,
have their generally accepted meaning.

3 Definitions of Policies

Most definitions of computer security policies have
one of the following forms:

1. Policy helps to define what you consider valuable,
and specifies what steps should be taken to safe-
guard those assets [GS96].

2. Policy is defined as the set of laws, rules, prac-
tices, norms, and fashions that regulate how an
organization manages, protects, and distributes
sensitive information, and that regulates how an
organization protects system services. [LS90,
dod85, SBH+91, com96]

3. Access may be granted only if the appropriate
clearances are presented. Policy defines the clear-
ance levels that are needed by system subjects to
access objects [dod82, SBH+91].

4. In an access control model, policy specifies the
access rules for an access control framework
[KC95].

The key concepts in these definitions are value, au-
thorization, access control, protection, and sensitivity
of information. Policy is about specifying the level of
value acceptable in a system, where value is a subjec-
tive and ambiguous measure. Value can be determined
by specific factors such as the people that have access
(i.e. it is valuable and thus requires top-secret clear-
ance), or abstract and ambiguous factors such as stock
market indicators.

A closer look at each of the policy definitions listed
above shows that the dominating concept is value. The
first definition makes this claim explicitly. The second
definition makes the assumption that sensitive infor-
mation needs to be protected because it has some per-
ceived value. The third and fourth definitions are based
on the need forauthorizationand we argue that the de-
velopment of this set of authorizations is necessary to
maintain the perceived value of the system.

Our working definition of policy will be value-base
and as follows:

Policy is defined as a set of rules that define
the acceptablevalueof a system, as defined
by its owners, as its state changes through
time.

As we shall see in later sections, the wordvaluein-
herits all the ambiguities from the previous definitions.
However, it also allows us to define a set of scenar-
ios where this ambiguity can be removed almost com-
pletely.

3 May 14, 1998

4 Proposed Model

In this section we define a model that can be used
to define policies as algorithmic and mathematical ex-
pressions that, as defined in section 3, can represent
policies as a function of value. The model presented
allows for the stepwise refinement of policies in a pro-
cess similar to that of software development in an ob-
ject oriented framework.

The general idea is to represent policies as a func-
tion of the value of the components at a particular level
and defining the value of that component as an aggre-
gation of the value of its subcomponents. For exam-
ple, in object oriented operating systems the value of
a system will be the value of the top level object, and
the value of that object will be an aggregation of the
value of each of its extensions. One of these exten-
sions might be the file systems and the value of the file
system will be an aggregation of its individual compo-
nents or files. The value of a file will be an aggregation
of its components or records, etc.

Define a functionPolicythat takes as parameters the
state of a system before and after an atomic operation.
The function will return a value oftrue or false
depending on whether the operation has violated pol-
icy because the value of the system changed from one
state to the next. ThePolicy function then needs a
helper function that calculates the value of the system
at a particular state. We call this function theSystem
Valuefunction and it takes as a parameter the state of
a system and calculates the value of that system by ag-
gregating the value of its components. For every com-
ponent of the system theSystem Valuefunction needs
to evaluate anObject Valuefunction that will return
the value of that object. If the object is composed of
sub-objects another evaluation level is needed.

Define a set of objects of interestI to contain all
objects that are relevant to our policy. Each setI con-
tains a set of objectsfo1; : : : ; oi; : : : g where each
object can be represented as an tuple of attributes
ha1; a2; : : : ; ani that contain all the information nec-
essary to describe that object completely with respect
to the policy.

The execution of a series of instructions, axiomati-
cally considered an atomic instruction with respect to
the policy, with a granularity that can be as fine or
coarse as necessary, results in a change of the setI

as illustrated in Figure 1.

Set of instructions

I i I i+1

Figure 1. A set of instructions, axiomat-
ically considered an atomic transaction
with respect to the policy, causes a
change in the set of interest.

As shown in equation 3, a policy can be defined as a
function that takes as arguments two numbers, a value
function, and two sets of interest (a set of interest be-
fore and after the execution of an instruction), and that
specifies whether the change in value caused by the
instruction is acceptable.

Note that this function permits the definition of
growth limits as shown in figure 2. Policies such
as Value(Ii) � Value(Ii+1) and Value(Ii+1) �
Value(Ii) are possible by settinga andb to (1;1) and
(0; 1) respectively1.

In this paper we limit ourselves to the policy defini-
tions as given by equation 3 and it will be used for all
policy functions in this paper unless explicitly stated
otherwise. However, other policy definitions are pos-
sible and their form will depend on the system and en-
vironment. In particular, the policy growth bounds can
be made to vary in time as shown by equation 4.

The system value function is an aggregation of the
values of the objects in the system. One possible sys-
tem value function is shown in equation 5.

1In practice it is not feasible to include numbers such as1 and
the policy function must change accordingly.

4 May 14, 1998

Policy : integer� integer� Value function�
set of interest� set of interest! boolean

fun Policy(a; b;Value; Ii; Ii+1) ::=
if a � Value(Ii) � Value(Ii+1) ^ Value(Ii+1) � b � Value(Ii) then

Policy := true;
else

Policy := false;
fi

nuf

(3)

Policy : integer� integer� Value function� Bounds function�
set of interest� set of interest! boolean

fun Policy(a; b;Value;Bounds; Ii; Ii+1) ::=
if Bounds(a; t) � Value(Ii) � Value(Ii+1)^

Value(Ii+1) � Bounds(b; t+�t) � Value(Ii) then
Policy := true;

else
Policy := false;

fi
nuf

(4)

Timet i t i+1

Vi

Vi*a

a ≤ c ≤ b b Vi*
a ≥ 0

Vi+1

Value

Max. value forVi+1

Min. value forVi+1

Figure 2. Equation 3 allows the definition
of limits for the growth of policy.

Value: set of interest! integer
fun Value(S) ::=

Value:=
P

x2S
v (x; S � x) 8x 2 S;

nuf

(5)

Note that this function is specific to the policy and
other variations may aggregate the values of objects by
multiplicative operations, logical operations, algorith-
mic aggregations, etc. The variation shown in equa-
tion 5, however, is general enough for our purposes
and will be used for all policy functions in this paper
unless explicitly stated otherwise.

Define next the object value functionv () that takes
an object and a set of other related objects as param-
eters and return a numeric value that represents the
value of that object. TheValue() function that equa-
tion 5 refers to is an aggregation of these object value
functions. These special object value functions, and
their aggregation method, are what allows us to define
policies, determine if a policy is ambiguous or unen-
forceable by a system, and allows us to verify that the
protection mechanisms of the system are working ap-
propriately.

Consider the following example: We would like
to encode the policy that reads “an email should be
deleted only if an identical copy exists. Otherwise it

5 May 14, 1998

must be saved.” Identical emails are those that have
the same message-id header. The objects of interest
are electronic mails, and the set of interest is the set of
all mains in the system.

The object value functionv, shown in equation 6,
takes as a parameter an electronic mail (the object) and
all the other mails in the system (the set of interest)
and computes a value that indicates if the system has a
duplicate of the mail given.

The parameters for the policy that define the prob-
lem of allowing deletions of email only if an identical
copy exists area = 1, b = 1, and the value functions
defined in equations 5 and 6. For the sets of interest
Ii andIi+1, representing the sets of emailbeforeand
after any operation that can delete an email, these pa-
rameters define the policyValue(Ii) � Value(Ii+1).

Let the symbolf represent theValue()function de-
fined in equation 5. To determine if any operation
would result in a violation of policy, an operating sys-
tem would construct the setsIi (representing all emails
currently held),Ii+1 (representing all emails left over
after the delete operation), and evaluates the function
Policy(1;1; f; Ii; Ii+1). If this function returnstrue
then the operation is allowed by policy and disallowed
by policy otherwise.

5 Modeling Existing Policies

Our model must be able to express existing policy
models. In this section we show that the most common
policies can indeed be represented by our model and
that the specification of these models provides insight
into models.

5.1 Mandatory Access Control

The Mandatory Access Control (MAC) model re-
quires that subjects have appropriate clearances to ac-
cess or modify data objects. In this model objects
and subjects have associated with them an access level
L 2 fL1; : : : ; Lng, where there exists a partial order-
ing � onL such thatL1 � L2 � : : : � Ln. Each
data object and each subject must have an assignment
of an access level [KC95].

The policy requires that subjects have an access
level that is equal or larger than the level of access of
the data object. The set of interest is the set of all sub-

jects and data objects in the system and we require that
each subject and data object must have the following
attributes defined:

Data Object Attributes:
} Access level:d:L.

Subject Attributes:
} Access level:s:L.
} An attribute that indicates whether the subject has

read a data object:s:di.

The object value function that can be used to imple-
ment the desired policy is shown in equation 7.

The parameters for the policy that specifies this sim-
plified version of the MAC model area = 1, b = 1,
and the value functions defined in equations 5 and
7. These parameters define the policyValue(Ii) �
Value(Ii+1).

To see why this works one must start with a sys-
tem where there are no violations. The system should
start in a state where no objects have been accessed
and hence the total value for the system, according to
equation 5, is zero. As objects are accessed by subjects
that have appropriate credentials the total value for the
system remains the same. However, if an object is ever
accessed by a subject that does not possess the access
level required, the value for the system drops and a vi-
olation of policy is detected.

There are several important properties that should
be noted about this particular model. It first identifies
the need to link objects and subjects. It also identi-
fies that the system must enforce the maintenance of
the attributes indicated for objects and subjects and,
if these are maintained for the system, provides a de-
terministic mechanism to detect violations of this pol-
icy. Note that a practical implementation of this model
would only require a list of all objects that have been
accessed by the subject, a much weaker condition than
keeping� attributes, where� is the number of objects
of the system. This particular policy could also have
been specified by storing in the objects a list of sub-
jects that have accessed the object. This information
may already be embedded in the audit trail.

If the system can enforce the maintenance of the
object and subject attributes then no other access con-
trol mechanism other than a process that evaluates the
policy given by equation 3 every time a command is

6 May 14, 1998

v : object of interest� set of object of interest! integer
fun v(o;S) ::=

v := 1;
8x 2 S do

) Remember that o is not included in S(
v := 0 if x:id = o:id;

od
nuf

(6)

v : object of interest� set of object of interest! integer
fun v(o;S) ::=

v := 0;
if o is a data objectthen

8x 2 S j x is a subjectdo
) o is an object and, as indicated above, s.o indicates whether s has read o(
v := v � 1 if s:o 6= 0 ^ s:L < o:L;

od
fi

nuf

(7)

executed is necessary. If the policy has to be enforced,
rather than simply detecting a violation, the system can
create a setIi+2 that simulatesthe changes to the at-
tributes of the objects inIi and can evaluate function 3
to determine whether an operation is allowed.

5.2 Discretionary Access Control

Discretionary Access Control (DAC) policies are
those where subjects can set the access rights to the
objects they own or have permissions to manage.

The set of interest for this policy includes subjects
(processes) and data objects (files, sockets, etc.). The
attributes that the operating system must maintain for
each of the objects in the set of interest are:

Data Object Attributes:
} For each subject in the system, and for each op-

eration permitted, an attribute indicating whether
the subject is allowed to perform the operation on
the object:d:si:R for reading,d:si:W for writ-
ing, d:si:C for changing attributes, etc.

} For each subject in the system, and for each op-
eration permitted, an attribute indicating the date
the permission bit was set:d:si:R:D for reading,
d:si:W:D for writing, d:si:C:D for changing at-
tributes, etc.

Subject Attributes:
} For each object in the system, and for each opera-

tion permitted, an attribute indicating whether the
subject has performed the operation on the object:
s:di:R for reading,s:di:W for writing, s:di:C for
changing attributes, etc.

} For each object in the system, and for each opera-
tion permitted, an attribute indicating the date the
subject performed the operation last:s:di:R:D
for reading,s:di:W:D for writing, s:di:C:D for
changing attributes, etc.

The value function that can be used to implement
the desired policy is given by equation 8.

There is a severe limitation to this model, as de-
fined by the policy and value functions in equations
3 and 5, in relation to the delete operation. If a data
object is deleted, and assuming that a delete operation
was defined, the set of interestafter the delete opera-
tion was completed will not have the data object that
was deleted. Hence we cannot compare, as in equation
8, the data object’s delete bit for that subject with the
subject’s delete bit for that object, and we cannot know
if the subject had permission to perform the operation.
This is a general limitation of this model because the
value of the system is defined in terms of the system
state at a time and thus information about the past is
not available.

7 May 14, 1998

v : object of interest� set of object of interest! integer
fun v(o;S) ::=

v := 0;
if o is a subjectthen

8x 2 S j x is a data objectdo
) There is a violation if the object has been read, the subject does not

have permission, and the access took placeafterthe policy was set(
v := v � 1 if o:x:R 6= x:o:R ^ o:x:R:D � x:o:R:D;
) There is a violation if the object has been written to, the subject does not

have permission, and the access took placeafterthe policy was set(
v := v � 1 if o:x:W 6= x:o:W ^ o:x:W:D � x:o:W:D;

...
) There is a violation if the object has been changed, the subject does not

have permission, and the change took placeafterthe policy was set(
v := v � 1 if o:x:C 6= x:o:C ^ o:x:C:D � x:o:C:D;

od;
fi

nuf

(8)

There are several possible solutions to this prob-
lem. The necessary information about the past can
be encoded as attributes that the operating system can
maintain, a new value function (equation 5) and a new
policy function (equation 3) can be defined so that the
value of the system can be determined as a function of
past system states, or we can redefine deletion so that
information about the last known state is kept.

Of all these solutions, the last is appropriate because
attribute maintenance is equivalent to logging. Hence,
it is always possible to determine the last known at-
tributes of a data object.

5.3 Lattice Structure

A mathematical structure is a lattice if it is a par-
tially ordered set,S, and there exist least upper and
greatest lower bound operators onS. A “poset” im-
plies that the partial ordering relation is reflexive, tran-
sitive, and antisymmetric. A least upper bound op-
erator onS provides the unique least upper bound of
any two elements inS. A greatest lower bound oper-
ator onSprovides the unique greatest lower bound of
any two elements inS [Den83]. This structure is used
to define several security policies for computer sys-
tems. For instance, the Biba and Bell LaPadula models
(see [Amo94, Den83]) use the lattice of security labels.
This section will show that our model can detect vio-
lation of all policies based on lattice structure.

Any lattice has a form similar to that shown in figure
3. In these policies each operation is allowed if the
objects occupy levels in the lattice such that there is
a partial ordering between them. The direction of the
ordering (i.e. whetherA � B or B � A) depends on
the definition of the operation.

If the system being examined can provide as at-
tributes of objects the operations performed on the ob-
jects and the lattice level associated with them, then
the system value function can trivially determine if a
violation has occurred by performing a simple com-
parison of the values of objects depending on the op-
eration performed.

5.4 Information Flow

An Information Flow policy is a lattice (SC,�),
whereSC is a finite set ofsecurity classes, and� is
a binary relation partially ordering the classes ofSC.
The relationA � B means that classA information
is lower than or equal to classB information. Infor-
mation is allowed to flow upwards or within the same
class but never downwards [Den83].

Information flows through the application of atomic
operations and the granularity of these operations will
depend on the policy. Each operation that accesses
or writes information will cause information to flow
within a class or between classes. In a typical com-
puter system operations are processes (we will refer to

8 May 14, 1998

Set of InterestI
at timei and timei+1

A lattice X

High

Low

A

B

OPq

A’ B’

I i+1I i

Figure 3. Our model can represent lat-
tice based policies by encoding the lat-
tice level as the value of the object.

them as subjects) and information objects are files (we
will refer to them as data objects).

We can associate a security class with every sub-
ject and data object and for every operation defined
in the system we must explicitly state the information
flow. For example, theopen() andread() opera-
tions causes information to flow from the data object to
the subject and hence the subject will inherit the access
level of the data object; awrite or creat system
call would cause information to flow from the subject
to the data object and the latter would inherit the access
level of the former.

In the information flow policy model, subjects can
access data objects that have the same or lower security
class and can write to data objects that have the same
or higher security class. Hence, policy violations are
1) when a subject reads a data object that has higher
security classification that itself, or 2) when a subject
writes to a data object that has lower security classifi-
cation than itself.

We assume that the operating system can maintain
the following attributes for each subject and each data
object:

Data Object Attributes:
} Current security class:d:s.
} Incremental change from the last security class:
d:c.

Subject Attributes:
} Current security class:s:s.
} Incremental change from the last security class:
s:c.

The incremental change from last security class
attribute is necessary because the security policy is
dependent on both the operation performed (read or
write), and the change in security class. From the
change we can infer the operation because the sub-
ject’s security class can only change after a read oper-
ation and the object class can only change after a write
operation.

Thecurrent security classattribute needs to be up-
dated by the system according to the following rules:

1. If the operation is a read from a subject (s) to an-
other subject or data object (o), the new access
level ofs is s:s := o:s if o:s > s:s.

2. If the operation is a write from a subject (s) to
another subject or data object (o), the new access
level ofo is o:s := s:s if s:s < o:s.

Hence, a violation of policy occurs if the security
class of a subject ever goes up, or the security policy
of a data object ever goes down. There is an important
exception to this rule. It is concerned with the admin-
istrative assignment of a security class to a subject. To
change the security class of a user the administrator
must lower the security class to zero and then raise it
to the new desired level (i.e. delete the user and re-
create him).

The value function that can be used to implement
the desired policy is shown in equation 9.

Notice that the model presented in this section can-
not detect information flow from covert channels. We
only consider legitimate channels, which are intended
for information flow between subjects, and storage
channels, which are data objects shared by subjects
[Den83].

Note also that the model will detect multiple vio-
lations as the value of the system will decrease every
time the policy is violated. A peculiarity of the value

9 May 14, 1998

v : object of interest� set of object of interest! integer
fun v(o;S) ::=

v := 0;
if (o is a subject̂

(o:s = 0 _ (o:s > 0 ^ o:c = o:s))) then
) Administrative change of class. We can ignore it.(
v := 0;

else
v := �1 if ((o is a subject̂ o:c > 0) _ (o is a data object̂ o:c < 0)) ;

fi;
nuf

(9)

function, as defined here, is that a violation of the pol-
icy assumes that the data object or subject involved has
been completely compromised. Hence, the granularity
of data objects is of critical importance.

For example, if data objects are files in a com-
puter, and a policy violation occurs where a user se-
curity class 1 writes to a file with security class 2 (pre-
sumably because the access control mechanisms have
failed), then the policy violation is noticed and the se-
curity class of the file is downgraded to 1 because it is
expected that the information in that file now is known
by the user of security class 1 and hence it can flow to
another user with security class 1.

However, in practice the user may have written only
a single byte into the document and the model pre-
sented here would downgrade the security class of the
rest of the document. This is clearly an undesirable
property. The granularity of class labeling should be
as fine as necessary. If the user can write a single byte,
then files should be labeled a byte at a time. If the user
can write in blocks, files should be labeled a block at a
time.

5.5 Integrity

Denning writes in [Den83] that:

“ Information flow models describe the dis-
semination of information, but not its alter-
ation. Thus, anUnclassifiedprocess, for ex-
ample, can write nonsense into aTop Secret
file without violating the multilevel security
policy. Although this problem is remedied
by access controls, efforts to develop a mul-
tilevel integrity model have been pursued.
Biba [Bib77] proposed a model where each

object and process is assigned an integrity
level, and a process cannot write into an ob-
ject unless its integrity level is at least that of
the object (in contrast, its security level must
be no greater than that of the object).”

Hence, the integrity model can be modeled easily by
a simple modification to the information flow model
where the directions of the checks are inverted.

5.6 Identification and Authentication

In [Woo94] Charles Cresson Wood mentions the
following policies for identification and authentica-
tion:

1. All users must be given a unique identity prior
to being able to use the company’s computer sys-
tem.

2. All users must have their identity verified prior to
being permitted to use the company’s computer
system.

For the first policy each user must be unique in a
computer system (i.e. the list of defined users must
not have two similar identities). In this case, the set of
interest is composed of identity database entries for all
users (i.e. password file). The object of interest is an
identity database entry. For every entry in the identity
database, the system must maintain an identity string
s:id.

The value function that can be used to implement
this policy is shown in equation 10.

The second policy specified by Wood requires that
each subject (process) must have an identity and veri-
fication token that is used to determine if the claimed
identity is true. Therefore, after logon the process’s
identity and verification token should match those in

10 May 14, 1998

v : object of interest� set of object of interest! integer
fun v(o;S) ::=

v := 0;
8x 2 S do

v := �1 if o:id = x:id;
od

nuf

(10)

the identity database. The set of interest consists of
all subjects (processes) of the system and all identity
database entries. For every subject in the system and
for every entry of the identity database, the system
must maintain two attributes the identity tokens:id
and verification tokens:ver.

The value function that can be used to implement
the desired policy is shown in equation 11:

The parameters for the policy that specifies this IA
model area = 1, b = 1, and the value functions de-
fined in equation 5, and in this section. These parame-
ters define the policyValue(Ii) � Value(Ii+1). With
this modeling of the policies, the value of the system
remains the same if the policies are followed.

6 Modeling Policies for COTS Systems

The issue of detecting policy violations is partic-
ularly difficult in commercial off the shelf (COTS)
operating systems such as UNIX , Windows NT, Mac
OS, etc. These operating systems provide a series of
protection mechanisms that are inadequate for the en-
forcement of complex real-world policies and, for the
most part, are not customizable when the need to de-
tect policy violations arises.

Recall that in section 1 we mentioned that it may be
desirable to define policies whose rigid enforcement
may be undesirable. In this section we will give ex-
amples of such real-world policies, explain how these
policies can be encoded in our model.

The simple formal specification of policies de-
scribed in this document allows us to explore the cre-
ation of computer policies and their impact on other
frameworks that depend on these specifications. For
example, it may be used to determine if an action taken
by a protection mechanism is a violation of policy and
may point to areas in these mechanisms that may have
potential vulnerabilities.

This model also gives us a better understanding of

the impact that ambiguities and inconsistencies in pol-
icy specifications have in the modeling of computer
security protection frameworks.

6.1 The use of games during business hours

Assume that the CEO of a company reads that it
is reported that 100 billion dollars a year in lost pro-
ductivity is caused by computer games [Gib97]. Area
managers are worried that the complete removal of
these games may affect morale and hence management
decides to institute the policy that the computer games
that are installed on local systems can only be used
outside business hours.

It may be undesirable to enforce this policy auto-
matically because the notion of business hours may
vary among groups in the organization, and there may
be circumstances where some employees may be al-
lowed, because of exceptional circumstances, to vio-
late this policy.

The set of interest is all the users in the system. To
model this policy using the model described in this
document we would require that the operating system
maintain for every user (subject) a list of programs ex-
ecuted and the dates and times of execution. Note that
the notion of C2 logging satisfies this requirement be-
cause the execution of every program is recorded with
the time of execution and the name of the user that ex-
ecuted the program.

Subject Attributes:
} A set of programs executed:s:Pi.
} The time and date of every program executed:
s:Pi:T .

} An indication of the type of program executed:
s:Pi:Y .

The value function that can be used to describe the
desired policy is shown in equation 12.

11 May 14, 1998

v : object of interest� set of object of interest! integer
fun v(o;S) ::=

v := 0;
if o is a processthen

v := �1;
8x 2 S j x is an identity database entrydo

v := 0 if o:id = x:id ^ o:ver = x:ver;
od

fi
nuf

(11)

v : object of interest� set of object of interest! integer
fun v(o;S) ::=

v := 0;
if o is a subjectthen

8x 2 o:P do
v := v � 1 if isBusinessHour(x:T) ^

x:Y = a game;
od

fi
nuf

isBusinessHour: time ! boolean
fun isBusinessHour(t) ::=

v := false;
) We define business hour to be Monday to Friday from 9 to 4.

Realbusiness hours are bound to be more complex.(
v := true if ((t:hour> 9 ^ t:hour< 4) ^

(t:day 6= sunday^ t:day 6= saturday)) ;
nuf

(12)

12 May 14, 1998

The parameters that specify this policy area = 1,
b = 1, and the value functions defined in equations 5
and 7. These parameters define the policyValue(Ii) �
Value(Ii+1).

It is impossible for the system to maintain the at-
tributes:Pi:Y for the general case, as users can install
their own programs and disguise them as normal pro-
grams. However, it is possible for the system to main-
tain this attribute for all known games installed in the
system.

6.2 Stock Market Operations

So far we concentrated on policies that are con-
cerned with access controls. The model presented in
this paper, however, can be used to represent and mon-
itor the adherence to other types of policies so long
as there are discrete operations that we must consider
atomic, that take a set of interest from one state to an-
other, and that the value of the set of interest can be
determined.

Consider, for example, the case of a large financial
institution where there exists a policy that specifies that
arbitrary financial transactions are allowed in the com-
pany so long as all the liquidable assets belonging to
the company exceed in value the acquired debts by at
least 150%.

Implementation of such a policy in the institution’s
computer systems can be an expensive proposition,
time consuming and error prone. However, if the com-
puter system can maintain the appropriate attributes
for the relevant objects—and it is likely that they al-
ready do—then it is a simple matter to encode the pol-
icy. The set of interest are all the records that describe
assets and liabilities (we will call thesefinancial ob-
jects).

Financial Object Attributes:
} The type of financial object:o:t. Valid values are

“asset” and “liability.”
} The value of the financial object:o:$.

The value function that can be used to implement
the desired policy is shown in equation 13:

6.3 File access restriction in Java

In the JDK, the settings acl.read in
.hotjava/properties are used to grant
limited access to local files.acl.read is a path
specifying directories that can be read from. This
policy can be represented by the model presented in
this paper as follows:

An atomic operation will be axiomatically defined
as the execution of any method in Java. We assume
that the Java interpreter could generate a log of the
attributes defined and could generate notifications of
method completions.

As shown in equation 14, the policy function takes
as arguments a system value function, an object value
function, and two sets of interest (before and after
the execution of an instruction). The function returns
true if the policy has not been violated andfalse
otherwise.

The policy we specify requires that applications
only read or write files that are inside a fixed set of
directories specified in an Access Control List (ACL).
The set of interest consists of subjects (java applica-
tions or applets), the files they read or write, and a
set of path specifications that indicate the directories
where the applications can read or write:

Element of ACL:
} Path of Object in ACL:a:f .

File Object Attributes:
} Canonical Path Name:f:c.
} Time of Change of Canonical Path Name (for file

objectf): f:t.

Subject Attributes:
} File Object Accessed:s:f .
} Time of File Object Access (for subjects): s:t.

The value function that can be used to implement
the desired policy is shown in equation 15.

7 Modeling Policies that Incorporate the No-
tion of Time

Many policies incorporate the notion of time as an
essential component, or explicitly require that the pas-
sage of time be considered. The policy considered in

13 May 14, 1998

v : object of interest� set of object of interest! integer
fun v(o;S) ::=

v := 0;
if o = on then

) We only need to perform this step once, hence the testo = on (
suml := 0;
suma := 0;
8x 2 S [fog do

suml := suml+ x:$ if x:t = liability ;
suma := suma+ x:$ if x:t = asset;

od
v := �1 if suma � 2:5 � suml;

fi
nuf

(13)

Policy : System Value function�Object Value function�
set of interest� set of interest! boolean

fun Policy(Value; v; Ii; Ii+1) ::=
if Value(Ii; v) � Value(Ii+1; v) then

Policy := true;
else

Policy := false;
fi

nuf

(14)

v : object of interest� set of object of interest! integer
fun v (o;S) ::=

v := 0;
if o is a subjectthen

) search ACL to see if some ACL object allows the user’s access(
m := 0;
8x 2 S j x is an ACL elementdo

) Access is allowed if the file is in the ACL
and the ACL element was defined before the access(
m := 1 if x . o:f ^ o:t > x:t;
v := �1 if m = 0;

od
fi

nuf

(15)

14 May 14, 1998

section 6.1, for example, requires that the system keep
a time-stamp for some attributes.

The model presented in this paper can easily incor-
porate time by taking it into account at any one of
the value functions. We can identify three different
kinds of time-dependent policies: those that require a
record of the time when an attribute of an object was
defined (time-stamps), those that need to be aware of
the passage of time (clock-ticks), and those that re-
quire knowledge of the time when evaluating the pol-
icy functions (evaluation-time).

Time-stamps can be thought of as another object at-
tribute, or the attribute of an attribute. If an objecto

has an attributeo:c, the time at which this attribute was
defined can be represented byo:c:t or o:c t.

Clock-ticks are special because every interval in the
clock tick must be considered an atomic operation that
must trigger the evaluation of the policy functions. The
value of the time can be obtained through a special
object in the set of interest that we denote with the
symbol� . This object has special attributes defined
that return relevant portions of time.�:h returns the
hour,�:m returns the minutes,�:s the seconds, etc.

The following are examples of policies that can be
expressed given the assumptions above:

� The use of games during business hours (see sec-
tion 6.1), as an example of a policy that requires
time-stamps.

� Digital time-locks are an example of policies that
require clock-ticks in the object value function.
The policy states that a particular document can-
not be read/written-to/unlocked until a specified
time, or until a specified number of clock-ticks
have elapsed.

� A policy that reads “The total number of users
that can access a resource between noon and mid-
night should not exceed a threshold,” is an ex-
ample of a policy that would require the use of
clock-ticks in the system value function.

� A policy that requires that the value of the system
satisfies certain constraints within some time in-
terval (for example during the morning hours) is
an example that would require clock-ticks in the
policy function.

8 Future Work

In this section we present some of the issues that
have not been addressed in this paper but that require
more research.

8.1 Development of a Comprehensive Library of
Policy Functions

The model presented in this paper is well suited to
the development of a comprehensive library of policy
functions that can describe a wide variety of common
policies for different environments. There are a num-
ber of benefits to developing a library of policies, in-
cluding the public availability of these functions, en-
couraging the refinement and verification of the func-
tions, etc.

8.2 Limited Policy Violation Prevention

The models and systems presented in this paper can
be modified to perform a limited form of policy viola-
tion prevention under special circumstances.

Under the assumption that an operation imple-
mented in hardware, firmware, or software is well de-
fined and its implementation conforms to its specifi-
cation, it is possible to assume that certain conditions
will hold after the execution of the operation.

For example, it is possible to assume that a machine
instruction will execute and that its execution will have
certain well defined effects on the computer system.
Under the assumption that theload instruction is cor-
rectly implemented, we can conclude that the execu-
tion of the “load REG 0 0x00FF ” statement will
affect the contents of registerREG0 and that its value
after the execution will be0x00FF .

Similarly, we may assume that higher level instruc-
tions or system calls, if correctly implemented ac-
cording to specifications, will have a certain effect on
certain objects. For example, under the assumption
that theread system call in UNIX is correctly im-
plemented, we can assume that the statement that al-
lows usergollum to read the filepassword will
result in the modification of theread by attribute for
the filepassword such that it will contain the value
gollum .

Hence, it is possible for an operating system to use
a mechanism based on our model to theorize the state

15 May 14, 1998

of the system after an atomic operation, with respect
to the policy, and hence evaluate the policy functions
for the theorized state and the previous state and deter-
mine if a policy violation would occur if the operation
is allowed to execute. This constitutes a limited form
of policy violation prevention.

A word of caution is appropriate here. In theorizing
the result of an operation, the operating system may
be making a mistake because the actual implementa-
tion of the operation may not adhere to specification.
Hence, it is possible for the operating system to deny
an operation that would not cause a violation of pol-
icy or allow an operation that would violate policy. In
both cases, the operationshould notviolate policy but
the actual implementation differs from the theoretical
result.

In the example given above, the operationread on
thepassword file may not modify theread by at-
tribute and hence it may not contain the name of the
user gollum . In this case, the mechanism would
not allow the operation to go through because it ex-
pects the operation to violate policy even though it
does not. Conversely, theread operation on the
file /tmp/temp file may modify theread by
attribute of thepassword file—because of the ex-
ploitation of a vulnerability, for example—to contain
the usergollum even though it should not and the
mechanism will allow the operation to continue even
though it should not.

Hence, this model could be used to prevent policy
violations under the assumption that it is feasible to
theorize the result of atomic operations (with respect
to policy).

There is a need to provide security mechanisms that
do not constitute a single point of failure. Stephanie
Forrest et al. argue that “... Many computer security
systems are monolithic, in the sense that they define a
periphery inside which all activity is trusted. When the
basic defense mechanism is violated, there is rarely a
backup mechanism to detect the violation.” [FHS97].

This model, used as a limited form of policy vio-
lation prevention mechanism can be used as an addi-
tional layer of protection that prevents the execution
of operations thatshould notbe executed (regardless
of whether their actual execution would violate pol-
icy). In this role this model cannot guarantee that op-
erations allowed to execute will not violate policy and

the detection of this these events is left to the policy
violation detection mechanism.

9 Conclusions

In this paper we have presented a model for express-
ing policies as algorithmic and formal expressions that
can be defined in a process that is akin to the software
development cycle, allowing the stepwise refinement
of policies. We believe that this model is a signifi-
cant improvement in the area of policy specification
because it starts with the assumption that organizations
will use COTS systems and that models for analyz-
ing and specifying policies must take the limitations
of these systems into account.

The model is also well suited for the development
of a mechanism that can be used for detecting policy
violations for policies that can be expressed with our
model. We believe that such a system could be imple-
mented readily and could provide real-time detection
for most policy violations.

References

[A+76] R.P. Abbott et al. Security Analysis
and Enhancements of Computer Operat-
ing Systems. Technical Report NBSIR
76-1041, Institute for Computer Science
and Technology, National Bureau of Stan-
dards, 1976.

[AKS96] Taimur Aslam, Ivan Krsul, and Eugene
Spafford. Use of A Taxonomy of Se-
curity Faults. In19th National Infor-
mation Systems Security Conference Pro-
ceedings, Baltimore, MD, October 1996.

[Amo94] Edward Amoroso.Fundamentals of Com-
puter Security Technology. Prentice Hall,
1994.

[BB96] Matt Bishop and Dave Bailey. A Critical
Analysis of Vulnerability Taxonomies.
Technical Report CSE-96-11, Depart-
ment of Computer Science at the Uni-
versity of California at Davis, September
1996.

16 May 14, 1998

[BD96] Matt Bishop and Michael Dilger. Check-
ing for Race Conditions in File Accesses.
Computing Systems, 9(2):131–152, 1996.

[Bib77] Keneth J. Biba. Integrity Considerations
for Secure Computer Systems. Technical
Report ESDTR-76-372, The MITRE Cor-
poration, Bedford, MA, April 1977.

[Bis95] Matt Bishop. A Taxonomy of UNIX Sys-
tem and Network Vulnerabilities. Tech-
nical Report CSE-95-10, Department of
Computer Science at the University of
California at Davis, 1995.

[CDE+96] Mark Crosbie, Bryn Dole, Todd Ellis,
Ivan Krsul, and Eugene Spafford. IDIOT
- Users Guide. Technical Report TR-96-
050, Purdue University, September 1996.

[Coh90] Edward Cohen. Programming in the
1990s. Springer-Verlag, 1990.

[com96] A Guide to Developing Computing Policy
Documents, 1996.

[Den83] Dorothy Denning. Cryptography and
Data Security. Addison-Wesley Publish-
ing Company, 1983.

[DFW96] Drew Dean, Edward W. Felten, and
Dan S. Wallach. Java Security: From Hot-
Java to Netscape and Beyond. InPro-
ceedings of the IEEE Computer Society
Symposium on Research in Security and
Privacy 1996, pages 190–200. Princeton
University, 1996.

[dod82] DoD 5200.1R, The Department of De-
fense Information Security Program Reg-
ulation, July 1982.

[dod85] DoD 5200.28-STD, Department of De-
fense Trusted Computer Systems Evalu-
ation Criteria, December 1985.

[FHS97] Stephanie Forrest, Steven A. Hofmeyr,
and Anil Somayaji. Computer Immunol-
ogy. Communications of the ACM,
40(10):88–96, October 1997.

[Gib97] W. Wayt Gibbs. Taking Computers to
Task. Scientific American, pages 82–89,
July 1997.

[GS96] Simson Garfinkel and Gene Spafford.
Practical UNIX and Internet Security.
O’Reilly & Associates, Inc., second edi-
tion edition, 1996.

[KC95] I-Lung Kao and Randy Chow. Enforce-
ment of Complex Security Policies with
BEAC. In Proceedinngs of the 18th
National Information Systems Security
Conference, volume I, pages 1–10. Na-
tional Institute of Standards and Technol-
ogy/National Computer Security Center,
October 1995.

[KS94] Sandeep Kumar and Eugene Spafford. A
Pattern Matching Model for Misuse Intru-
sion Detection. In17th National Com-
puter Security Conference, 1994.

[LBMC93] Carl Landwher, Alan Bull, John Mc-
Dermott, and William Choi. A Tax-
onomy of Computer Program Security
Flaws. Technical Report NRL/FR/5542–
93-9591, Naval Research Laboratory,
November 1993.

[Lev94] Nancy Leveson. High-pressure Steam En-
gines and Computer Software.Computer,
27(10):65–73, October 1994.

[Lin75] Richard R. Linde. Operating system pen-
etration. InNational Computer Confer-
ence, 1975.

[LS90] Dennis Longley and Michael Shain. The
Data and Computer Security Dictionary
of Standards, Concepts, and Terms, 1990.

[MF97] Gary McGraw and Edward W. Felten.
Java Security: Hostile Applets, Holes and
Antidotes. John Wiley & Sons, Inc., 1997.

[MFS90] B. Miller, L. Fredrikson, and B. So.
An Embirical Study of the Reliability of
UNIX Utilities. Communications of the
ACM, 33(12):32–44, December 1990.

17 May 14, 1998

[MKL +95] Barton P. Miller, David Koski,
Cjin Pheow Lee, Vivekananda Mag-
anty, Ravi Murthy, Akitkumar Natarajan,
and Jeff Steidl. Fuzz Revisited: A
Re-examination of the Reliability of
UNIX Utilities and Services. Technical
report, Computer Science Department,
University of Wisconsin, November
1995.

[Pri98] Katherine Price. Misuse Detection Needs
and Auditing System Capabilities (Pre-
liminary Title). Master’s thesis, Purdue
University, 1998.

[SBH+91] Daniel F. Sterne, Martha A. Branstad,
Brian S. Hubbard, Barbara A. Mayer, and
Dawn M. Wolcott. An Analysis of Appli-
cation Specific Security Policies. InPro-
ceedings of the 14th National Computer
Security Conference, volume I, pages 25–
36, October 1991.

[Set89] R. Sethi.Programming Languages Con-
cepts and Constructs. Addison–Wesley
Publishing Company, 1989.

[Woo94] Charles Cresson Wood.Information Se-
curity Policies Made Easy. BookMasters,
Ohio, 4 edition, 1994.

18 May 14, 1998

