
HOST-BASED MISUSE DETECTION AND CONVENTIONAL OPERATING

SYSTEMS' AUDIT DATA COLLECTION

A Thesis

Submitted to the Faculty

of

Purdue University

by

Katherine E. Price

In Partial Ful�llment of the

Requirements for the Degree

of

Master of Science

December 1997

ii

To my parents, Rick and Pat, and my �anc�e, Dan.

iii

ACKNOWLEDGMENTS

Many people have made contributions to the development of this work. First o�,

I thank Dr. Spa�ord for his guidance. The process leading to this work was long and

at times seemed impossible, but Spaf was always there to bring me back to reality

when I wandered too far astray. I also thank my other committee members, Dr. Mike

Atallah and Dr. Carla Brodley, for their time and energy, especially when it came

to scheduling a defense, a task that proved to be almost as di�cult as compiling

this work. I also thank Dr. Gorman for his feedback and his words of wisdom, even

though sometimes I foolishly did not heed them.

I thank all my past and present friends at Purdue for their friendship and support.

Many special thanks to everyone in COAST who never let me take life too seriously.

I especially acknowledge the tremendous task Marlene Walls has tackled in the or-

ganization of Spaf, and I thank her for always squeezing me into his schedule with a

smile.

I thank my parents, Pat and Rick Price, for supporting me throughout my edu-

cational career. Their support opened doors for me that may have otherwise been

closed. Also, I thank my sister Becky Price for always making my days look simple

and my problems surmountable when compared to her whirlwind tour of life.

I thank Boo Bear and Oscar for always being there purring for me, no matter

how foul my mood when returning from work. And �nally, I thank Dan Schikore for

keeping me sane throughout the development of this work.

Portions of this work were supported by contract F30602-96-2-0268 from Rome

Labs (USAF), and by the sponsors of the COAST Laboratory.

DISCARD THIS PAGE

iv

TABLE OF CONTENTS

Page

LIST OF TABLES : vii

LIST OF FIGURES : ix

ABSTRACT : x

1. INTRODUCTION : 1

1.1 Computer Crime : 1
1.2 Computer Security : 2

1.2.1 Risks : 3
1.2.2 Threats : 3
1.2.3 Vulnerabilities : 5
1.2.4 Countermeasures : 6

1.3 Intrusion Detection : 8
1.3.1 Intrusion Detection Models : : : : : : : : : : : : : : : : : : : 9

1.4 Audit Trails : 10
1.5 Terminology : 11
1.6 A Model of an Auditing System : 14
1.7 Misuse Detection Challenge of Inadequate Audit Data : : : : : : : : : 16
1.8 Thesis Organization : 17

2. RELATED WORK : 19

2.1 Operating Systems with Extended Audit Generation Capabilities : : 19
2.1.1 The Compartmented Mode Workstation : : : : : : : : : : : : 20
2.1.2 SunOS MLS System : 21
2.1.3 The VAX Security Kernel : 22

2.2 A Standard Audit Trail Interface : 23
2.2.1 Audit Trail Format Standards : : : : : : : : : : : : : : : : : : 24
2.2.2 Audit Trail Content Standards : : : : : : : : : : : : : : : : : 27

2.3 Distributed Auditing Services : 29
2.3.1 Distributed Auditing System (DAS) : : : : : : : : : : : : : : : 30
2.3.2 Distributed Audit Service (XDAS) : : : : : : : : : : : : : : : 31

2.4 Unresolved Auditing Issues and Misuse Detection : : : : : : : : : : : 31

v

Page

3. SURVEY OF MISUSE DETECTION SYSTEMS : : : : : : : : : : 34

3.1 The Distributed Intrusion Detection System (DIDS) : : : : : : : : : : 35
3.1.1 The DIDS Host Monitor Audit Record Format : : : : : : : : : 38
3.1.2 Audit Data Requirements Imposed by DIDS : : : : : : : : : : 41

3.2 IDIOT Pattern Matching System for Misuse Detection : : : : : : : : 41
3.2.1 IDIOT Canonical Audit Trail : : : : : : : : : : : : : : : : : : 43
3.2.2 Audit Data Requirements Imposed by IDIOT : : : : : : : : : 44

3.3 The NADIR/UNICORN Misuse Detection System : : : : : : : : : : : 44
3.3.1 NADIR Audit Record Data : : : : : : : : : : : : : : : : : : : 47
3.3.2 UNICORN Audit Record Format : : : : : : : : : : : : : : : : 48
3.3.3 UNICORN Security Scanner : : : : : : : : : : : : : : : : : : : 50
3.3.4 Audit Data Requirements Imposed by NADIR/UNICORN : : 51

3.4 NIDES Misuse Detection System : 51
3.4.1 NIDES Audit Data Format : : : : : : : : : : : : : : : : : : : 54
3.4.2 NIDES Additional System Con�guration Information : : : : : 54
3.4.3 Audit Data Requirements Imposed by NIDES : : : : : : : : : 58

3.5 The STAT/USTAT State Transition Analysis Tool : : : : : : : : : : : 58
3.5.1 STAT Audit Record Format : : : : : : : : : : : : : : : : : : : 60
3.5.2 USTAT Audit Record Format : : : : : : : : : : : : : : : : : : 61
3.5.3 USTAT Use of Additional System Information : : : : : : : : : 64
3.5.4 Audit Data Requirements Imposed by STAT/USTAT : : : : : 64

3.6 Results of the Survey : 64
3.6.1 User Role Information : 66
3.6.2 Tracking Users in a Distributed System : : : : : : : : : : : : : 67
3.6.3 Object Domain Information : : : : : : : : : : : : : : : : : : : 67
3.6.4 Object Content Information : : : : : : : : : : : : : : : : : : : 68
3.6.5 Application Level Audit Data : : : : : : : : : : : : : : : : : : 69
3.6.6 Network Events Audit Data : : : : : : : : : : : : : : : : : : : 70

3.7 Summary : 70

4. SURVEY OF CONVENTIONAL OPERATING SYSTEMS : : : : 72

4.1 HP-UX : 73
4.2 OpenVMS VAX : 75
4.3 Solaris : 79
4.4 UNICOS : 83
4.5 Windows NT : 85
4.6 Results of the Survey : 86

4.6.1 Application Level Audit Data : : : : : : : : : : : : : : : : : : 87
4.6.2 Self-Contained Audit Records : : : : : : : : : : : : : : : : : : 88
4.6.3 Operating System Documentation : : : : : : : : : : : : : : : : 89

vi

Page

4.7 Summary : 90

5. MISUSE DETECTIONNEEDS AND AUDIT COLLECTION CA-
PABILITIES : 91

5.1 Characterization of an Event : 92
5.1.1 Subject Information : 93
5.1.2 Action Information : 98
5.1.3 Object Information : 99
5.1.4 Additional Information : 100

5.2 Deduction of System State Information : : : : : : : : : : : : : : : : : 100
5.3 Examination of Operating System Capabilities : : : : : : : : : : : : : 102
5.4 Summary : 106

6. CONCLUSION AND FUTURE DIRECTIONS : : : : : : : : : : : 107

6.1 Future Directions : 108

LIST OF REFERENCES : 109

DISCARD THIS PAGE

vii

LIST OF TABLES

Table Page

2.1 svr4++ Basic Record Structure : 26

2.2 XDAS Audit Events and Default Event Classes : : : : : : : : : : : : : : 32

3.1 Host Audit Record (HAR) Format : 39

3.2 DIDS Actions : 39

3.3 DIDS Domains : 40

3.4 Events Supported by IDIOT's Canonical Audit Trail : : : : : : : : : : : 45

3.5 ICN Service Dependent Audit Data : 48

3.6 UNICORN Audit Record : 49

3.7 NIDES Audit Data Fields : 55

3.8 NIDES Audit Data Actions, Part 1 : 56

3.9 NIDES Audit Data Actions, Part 2 : 57

3.10 NIDES Con�guration Classes for Statistical Analysis : : : : : : : : : : : 57

3.11 NIDES Con�guration Information for Expert System : : : : : : : : : : : 59

3.12 STAT Audit Record Format : 61

3.13 USTAT Actions and corresponding BSM Event Types : : : : : : : : : : 63

3.14 USTAT State Assertions : 65

4.1 HP-UX Event Types and Associated System Calls and Applications : : : 74

4.2 HP-UX Self-Auditing Applications : 76

4.3 OpenVMS Event Classes : 78

viii

Table Page

4.4 BSM Applications that Perform User-Level Auditing : : : : : : : : : : : 80

4.5 BSM Audit Classes : 81

4.6 UNICOS Security Log Record Types : 84

4.7 Windows NT Security Event Categories : : : : : : : : : : : : : : : : : : 85

5.1 Audit Trails Supported by Each Misuse Detection System : : : : : : : : 91

5.2 Subject Attributes and Misuse Detection Systems : : : : : : : : : : : : : 94

5.3 Action Attributes and Misuse Detection Systems : : : : : : : : : : : : : 95

5.4 Object Attributes and Misuse Detection Systems : : : : : : : : : : : : : 95

5.5 Other Attributes and Misuse Detection Systems : : : : : : : : : : : : : : 95

5.6 Subject Attributes and When Their States are Set : : : : : : : : : : : : 103

5.7 Action Attributes and When Their States are Set : : : : : : : : : : : : : 104

5.8 Object Attributes and When Their States are Set : : : : : : : : : : : : : 104

5.9 Other Attributes and When Their States are Set : : : : : : : : : : : : : 104

DISCARD THIS PAGE

ix

LIST OF FIGURES

Figure Page

1.1 Steps in Intrusion Detection : 9

1.2 Simple Model of an Auditing System : 14

1.3 Model of an Auditing System in a Distributed Environment : : : : : : : 16

3.1 Stages of Audit Trail Analysis in a Misuse Detection System : : : : : : : 35

3.2 DIDS Architecture : 36

3.3 Host Monitor Structure : 37

3.4 NIDES Architecture : 53

3.5 USTAT Audit Record Structure : 62

4.1 OpenVMS Audit Record Structure : 77

4.2 Typical BSM Audit Records : 80

x

ABSTRACT

Price, Katherine. M.S., Purdue University, December 1997. Host-Based Misuse De-
tection and Conventional Operating Systems' Audit Data Collection. Major Profes-
sor: Eugene H. Spa�ord.

Computing systems have evolved from stand-alone mainframes to complex, in-

terconnected open systems, and this evolution has led to a proliferation of avenues

of attack. With the knowledge that system misusers have open avenues for attack,

misuse detection provides an important line of defense. For a misuse detection system

to be e�ective, there needs to be an audit trail of system activity that was designed

to support misuse detection needs.

A major challenge in misuse detection is that audit data is inadequate. The data

supplied by current auditing systems lack content useful for misuse detection, and

there is no widely accepted audit trail standard.

This thesis presents a comparison of the needs of host-based misuse detection

with the capabilities of auditing facilities of conventional operating systems. Host-

based misuse detection systems are examined, and the audit data used by each are

outlined. Auditing systems of conventional operating systems are also examined, and

the data collected by each are outlined. A comparison of the needs of the misuse

detection systems and the capabilities of existing auditing facilities is then presented.

The results of this study aid in the determination of what data content should be

provided by auditing systems for the support of misuse detection goals.

1

1. INTRODUCTION

In this chapter, we review the rise of computer crime and discuss the importance

of computer security. We motivate the need for misuse detection and discuss misuse

detection's reliance on audit trails. Finally, we will present the problems we explore

in this thesis and outline the remaining chapters of this work.

1.1 Computer Crime

The communications revolution created by the integration of computing systems

and networks into almost every aspect of society has a�ected business, education,

travel, medicine, and research. These new technologies are enabling changes in how

people work and live [III93]. The communications technologies are making possible

collaborations and relationships that were previously restricted by geographic separa-

tion. Computers are taking over routine work and creating entirely new types of jobs

such as system controller and computer engineer. Computers and networks are in-

creasingly allowing people to live and work where and how they wish. Unfortunately,

the communications revolution is also enabling a new wave of crime.

Computer crime is on the rise, and estimates for losses from computer fraud are

in the billions of US dollars. The 1997 CSI/FBI Computer Crime Survey [Pow97] re-

vealed that 75% of the surveyed organizations reported �nancial losses from computer

security breaches. The damage to the 249 organizations who were able to quantify

their losses totaled over $100,000,000.

Sensitive information that previously were secured in �le cabinets are now being

stored and transmitted using computer systems and global networks. Millions of

�nancial transactions are transmitted over U.S. networks every day. In the 1996

Information Week/Ernst & Young Information Security Survey [Vio96], one-third of

2

the respondents reported using the Internet for exchange of business correspondence.

The people moving the information to computer systems have often failed to consider

the security requirements necessary to safeguard their assets, and so are providing

new targets for theft, fraud, vandalism, and espionage [ISV95].

The evolution from stand-alone machines to complex, interconnected systems

has led to computer systems that are increasingly vulnerable to computer attacks

[SSTG92, Pro94, ISV95, Pre97]. Most existing system have known security aws

and cannot be replaced for economic reasons. Additionally, �nding and �xing all

the security weaknesses is often technically infeasible. Increasingly, organizations are

relying on unsecure computer systems, and, increasingly, criminals are �nding fewer

obstacles exist to computer crime than conventional means.

In addition to organizations' reliance on unsecure systems, few computer attacks

are ever detected, and even fewer are reported. Fears of loss of reputation, consumer

con�dence, and competitive edge have lead to organizational aversions to report-

ing computer crime [ISV95, Pow97]. Finally, computer crime is often di�cult to

prosecute. Criminal law has not kept up with technology changes, and so computer

incidents are rarely treated with the severity accorded to conventional crimes [ISV95].

With knowledge that computer systems will come under attack, organizations

must assess their threats and develop defense strategies to safeguard their assets and

resources.

1.2 Computer Security

No organization has unlimited time and resources to devote to computer security.

Thus the �rst step to improving a system's security is to perform a risk analysis. A

risk analysis is the process of identifying a system's threats and vulnerabilities, and

the countermeasures that can be taken to protect the system [ISV95]. A risk analysis

helps an organization identify and weigh their risks and determine reasonable costs

to reduce the risks to acceptable levels.

3

1.2.1 Risks

Many risks to both tangible resources, such as money or proprietary information,

and intangible resources, such as reputation, consumer con�dence, or competitive

advantage, face an organization [GS96]. Loss or damage to any of these resources

could be disastrous for an organization. The risks facing an item are often divided

into three basic categories:

� Loss of Con�dentiality { Con�dentiality may be lost through unauthorized ac-

cess, disclosure, observation, or copying.

� Loss of Integrity { Integrity may be lost through unauthorized modi�cation,

repudiation, false data entry, or misrepresentation.

� Loss of Availability { Availabilitymay be lost through unauthorized destruction,

contamination, or monopolization.

During the risk analysis, all items considered of value are identi�ed, and the e�ects

of each item's loss or damage are determined in terms of lost money or time. Once

all items of value are identi�ed with their risks, threats to the items are determined.

1.2.2 Threats

Any possible danger to the system constitutes a threat [ISV95]. A threat might be

a person, such as a computer criminal; a thing, such as faulty software; or an event,

such as a power outage. During the risk analysis, possible threats to an organization's

resources are identi�ed. Threats are often characterized based on whether they are

internal or external to the organization and whether they are malicious or accidental

in nature.

1.2.2.1 Insider vs. Outsider Threats

A threat might arise from outside or from within an organization. Historically, the

vast majority of computer crime was committed by people from within the organiza-

tion. Insiders still account for the most theft of proprietary information, disruption

4

of service, and loss of con�dentiality, but recently the threat from outside has been

rising dramatically [Pow96, Pow97]. Though the threat from outside may never sur-

pass the insider threat, it may soon match it. The rise in the threat from outside is

possibly because of the similarly dramatic increase in network connectivity.

Threats from individuals with legitimate access to the system are of particular

concern because so many people are in this category. For example, employees, con-

tractors, and client representatives working on site have authorized access to the

computer system, and, even if an individual is not an authorized computer user,

physical access to the equipment can be abused. Insider threats are not limited to

people with technical savvy. Simply copying a con�dential �le onto a diskette and

dropping the diskette in the mail can result in major losses for the organization.

1.2.2.2 Malicious vs. Accidental Threats

Threats fall into two main categories: accidental and malicious. Accidental threats

include natural and physical dangers, such as oods, power failures, and earthquakes,

and unintentional dangers, such as careless users inadvertently erasing �les. Malicious

threats include intentional dangers, such as computer crime and industrial espionage.

The term intruder is often used to describe a malicious threat. The teenager

hacking into systems for fun and thrill is the type of intruder that has received recog-

nition in the popular media. Unfortunately, many organizations are faced with graver

threats. The Intruder Classi�cation Model [And94] classi�es intruders into four cate-

gories: individual intruders, organized groups, criminals, and espionage agents. The

categories, which are di�erentiated by motivation, provide a better understanding of

why computer intrusions are taking place.

Individual intruders are motivated by the challenge and thrill of gaining access to

a computer system, and normally perform little or no strategic planning. Organized

groups are motivated by gain of speci�c information or system resources to achieve

common goals, and the members often cooperate to de�ne strategies, and to select

and research targets. Criminals are motivated by pro�t or unfair market share, and

5

weigh the cost of the computer crime against more traditional methods. Espionage

agents are motivated by national economic or strategic objectives, and exhibit the

greatest variety and complexity of methods and resources.

Note that not all human threats are maliciously motivated. People make mistakes,

especially if untrained or careless. Though a mistake may be accidental in nature, it

can still be damaging. An accidental release of con�dential information may be as

damaging to an organization as if it was disclosed through a criminal attack. Thus,

accidental threats are as big of a concern as malicious threats.

1.2.3 Vulnerabilities

Once the threats are identi�ed, the vulnerabilities that may be exploited by the

threats are examined. A vulnerability is a point where the system is susceptible

to attack [ISV95]. A vulnerability might be a person, such as a system operator;

a thing, such as a network connection; or a system characteristic, such as the fact

that the facility is located in a ood zone. The risk analysis identi�es the system's

vulnerabilities that may be exploited by a threat.

Many factors have contributed to creating an environment that fosters the devel-

opment of vulnerabilities in computing systems [Den87, And94, GS96]:

� Flawed system components { System components are often designed and im-

plemented without security as a priority. Additionally, developing absolutely

secure systems is generally impossible. Security weaknesses in components and

lack of a security focus leads to vulnerabilities in integrated computing systems.

� Geographical distribution { Computer systems are located on every continent

and are connected into a global network. These systems are logically accessible

from anywhere in the world making geographic distribution no longer an ob-

stacle to access. Geographical distribution of systems makes control of physical

and logical access to each system di�cult.

6

� Size and complexity { Computing systems often support thousands of users

and are composed of hundreds of individual computers connected into a local

area network. Additionally, these systems are interconnected by the thousands

to form wide area networks. Lack of a full understanding of the underlying

systems, network topologies, and multiple points of access allows vulnerabilities

to develop unnoticed.

� Frequency of change { The speed and frequency of change in technologies and

applications of computer systems grow with the systems' size and complexity.

Systems, applications, and network connections are added and removed daily.

The frequency of change in computing systems leads to problems in tracking

and controlling the systems, thus allowing vulnerabilities to develop.

Vulnerabilities exist and sometimes are inherent in today's computer systems.

Finding and correcting all the vulnerabilities is often infeasible for economic and

technical reasons, and the replacement of many of the systems with more secure

systems is economically impractical. Also, absolutely secure systems are di�cult, if

not generally impossible, to develop, and secure systems are still vulnerable to abuses

by insiders with legitimate access needs. Therefore, organizations must establish

countermeasures to protect their systems and resources.

1.2.4 Countermeasures

Once threats and vulnerabilities are identi�ed, countermeasures are developed to

reduce risks to acceptable levels. Countermeasures often include physical systems,

such as locks on doors, as well as procedural systems, such as requiring expenditures

over a certain amount to be approved. The risk analysis identi�es possible counter-

measures and the acceptable cost of protection.

Systems contain vulnerabilities, and a number of threats exist that might exploit a

system's weaknesses. Therefore developing a defensive strategy is of great importance.

A defensive stance normally consists of four parts:

7

� Security Policy { Creating a comprehensive security policy is one of the most im-

portant steps in securing a system. The issues and details of the security policy

are developed based on the results of the risk analysis. The policy states what

items and resources need to be protected and includes plans and procedures for

implementing protection strategies.

� Prevention { If possible, security incidents should be prevented by removing

system vulnerabilities and alleviating threats. The �rst step to prevention is

correct design, development, and installation of the system. Then the system is

examined and reviewed for possible vulnerabilities, and discovered weaknesses

are corrected when feasible. To alleviate accidental threats, users and operators

are educated on proper usage of the system. To alleviate malicious threats,

physical and logical perimeters to the system are established, and the system is

monitored to deter intrusive activity.

� Detection { All security incidents cannot be prevented for a number of reasons.

Systems contain vulnerabilities that cannot easily or quickly be found and �xed,

building secure systems without any vulnerabilities is extremely di�cult, and

secure systems are still vulnerable to insider abuse and mistakes [Den87]. There-

fore, detection of intrusive activity and other security incidents is an important

line of defense. Additionally, detection of attempted attacks, even when not

successful, is important for a computer system's defense. Monitoring the com-

puter systems to detect problems in a timely fashion minimizes damage from

security incidents, establishes accountability, and deters threats.

� Response/Recovery { Security incidents happen; thus e�ective procedures for

responding and recovering to normal operations are needed. Response includes

procedures to stop or contain damage and gather evidence on the incident. The

evidence may be used during recovery to determine extent of the damage or

later for criminal prosecution. After responding to the incident, the system

needs to be restored and returned to normal operation. Additionally, recovery

8

may involve determination of the exploited weaknesses and subsequent removal,

if possible, of the vulnerability.

1.3 Intrusion Detection

For the reasons discussed earlier, timely detection of security problems in a com-

puter system is an issue of signi�cant concern. Security controls cannot be relied upon

to safeguard a computer system against all threats. System vulnerabilities cannot be

totally eliminated in most circumstances. As long as threats and vulnerabilities exist,

detection of security incidents will play an important role in computer security.

An intrusion detection system detects security violations through automated anal-

ysis of system activity. Traditionally, security o�cers periodically reviewed audit

logs of system activity to detect break-in attempts and other suspicious activity

[HH86, VL89, JDS91]. Auditing subsystems were originally developed to produce

logs of system activity for accounting purposes. Activity logs, often called audit

trails, contain information such as who ran which program and how much memory,

disk space, and CPU time was used. Security personnel realized that accounting

packages could also be used as a security tool for detection of suspicious activity

[And80, Bon81, WK85].

Security personnel found that reviews of audit trails could have a signi�cant, pos-

itive impact on system security by uncovering suspicious activity that otherwise may

have gone unnoticed [And80, JDS91]. Unfortunately, security personnel also found

that the volume of audit data collected made human review of comprehensive audit

data impractical, if not generally impossible [VL89, IKP95]. Additionally, human

review of audit trails has the drawback of detecting security attacks after-the-fact

[GT96]. In many instances, the system may be compromised and the damage done

before the activity is detected by the security o�cer.

Much of the data recorded by an auditing system is irrelevant to intrusion detec-

tion because it pertains to legitimate activity by authorized users. The idea of using

a computer to reduce audit trails to a record of security-relevant activity, i.e. activity

9

that is suspicious and may be a indicative of a security problem, was �rst introduced

in the early 1980's [And80]. Figure 1.1 outlines the steps in intrusion detection. An

intrusion detection system (IDS) reduces audit data to a record of suspicious activity

that a human can feasibly review. Later, the concept of intrusion detection was ex-

panded to real-time monitoring of a computer system where the IDS might also react

to the suspicious activity in some fashion [Lun93, MHL94].

Audit Data
Collection

Audit Data
Analysis

Audit Trail

Report of
Suspicious

Activity

Figure 1.1 : Steps in Intrusion Detection

1.3.1 Intrusion Detection Models

In 1980, Anderson [And80] presented the idea that normal user behavior could be

characterized through analysis of activity in audit trails, and computer attacks and

attempted abuse could be uncovered by detecting activity that deviated signi�cantly

from the characterized \normal" behavior. After Anderson's ground-breaking paper,

much research was devoted towards devising statistical methods for characterizing

normal behavior and detection of abnormal activity.

By the mid-1980's, a number of prototype intrusion detection systems based on

uncovering abnormal activity were under development. Haystack [Sma88] was de-

veloped for Air Force computer systems, Intrusion Detection Expert System (IDES)

[LJ88] was developed at SRI International, and Discovery [MHL94] was developed at

TRW. All these prototype systems were based on the hypothesis that exploitation of

system vulnerabilities involves abnormal use of the system, and therefore computer

10

attacks can be detected from abnormal system activity [Den87]. This model for in-

trusion detection is often referred to as the anomaly detection model because it tries

to detect abnormal, or anomalous, activity.

In the late 1980's, intrusion detection systems began to be developed based on a

second model called the misuse detection model. The second model is based on the

hypothesis that known exploits of vulnerabilities can be described by attack signa-

tures or patterns, and therefore computer attacks can be detected by these patterns of

system misuse [MHL94]. The misuse model was developed because known intrusion

techniques that involved activity within a user's characterized normal range of behav-

ior are not detected by the anomaly detection model. Some example misuse detection

systems include Los Alamos National Laboratory's Network Anomaly Detection and

Intrusion Reporter (NADIR) [HJS+93], Advanced Security Audit trail Analysis on

UNIX (ASAX) [HCMM92] developed at the Facult�es Universitaires Notre-Dame de

la Paix, and Intrusion Detection In Our Time (IDIOT) [KS94] developed at Pur-

due University. For more information on intrusion detection techniques, refer to

[Lun88, MHL94].

1.4 Audit Trails

An audit trail is a record of computer system activity. An audit trail is generated

by an auditing system that monitors system activity, and the audit trail may be

comprised of user, application, and/or system-level activity. As illustrated earlier in

this chapter, audit trail analysis for intrusion detection plays an important role in

computer security, but audit trails also have many other signi�cant uses in the realm

of computer security [Bon81, Pic87, SM91]:

� Maintaining Individual Accountability { An individual's actions are tracked in

an audit trail allowing users to be personally accountable for their actions.

Knowing their activity is tracked leads to users being less likely to circumvent

security policy, and if an incident does occur, individual accountability can be

maintained.

11

� Reconstructing Events { Audit trails can be used to reconstruct the events

leading up to a incident, exposing vulnerabilities in the system. The detection

and removal of vulnerabilities is important to the defense of the system.

� Assessing Damage { Audit trails can be analyzed to determine the amount of

damage that occurred with an incident. Audit data can reveal what information

was disclosed or corrupted or who gained unauthorized access to information or

the system.

� Problem Monitoring { Audit trails can be used to uncover problems and perform

system health monitoring. Real-time monitoring and analysis of the status of

the system allows detection of problems, such as disk failures or network outages,

as they arise.

� Deterring Computer Crime { Belief that an e�ective auditing system exists and

there is a signi�cant risk of detection is a deterrent to computer crime.

The organization's security policy determines which types of activity are accept-

able and which are in violation of policy. This information is used to determine what

system activity is important, and thus should be monitored by the auditing system

and recorded in the audit trail. Audit trails are analyzed in real-time to detect se-

curity incidents and system problems as they develop, and after-the-fact for incident

recovery and damage assessment. Audit trails are often archived to allow for later

analysis of crimes or incidents.

1.5 Terminology

A di�culty with intrusion detection and auditing is ambiguous terminology. Many

common terms possess a number of accepted meanings. Some meanings are context-

dependent, while other meanings are inconsistent. The commonly-accepted de�ni-

tions are presented along with the terms used throughout the remainder of this thesis.

12

Audit (1) to examine a system for security problems and vulnerabilities [RS91]. (2)

to record and analyze system activity for security problems and vulnerabilities

[RS91]. (3) to analyze system activity for security problems [Bis89].

The three de�nitions are similar. The �rst de�nition refers to the activity of

reviewing a static snapshot of the system. For this reason, the �rst de�ned

audit activity is sometimes referred to as static audit. The second and third

de�nitions refer to the dynamic, continuous activity of monitoring and analyzing

the system state as it changes over time. The second de�nition includes both

the action of creating the record of system activity and the action of analyzing

the record of system activity, while the third de�nition only covers the analysis

of the record.

Throughout the remainder of this thesis, audit is de�ned as recording and ana-

lyzing system activity for detection of security problems, and an auditing system

is de�ned as a system that collects and analyzes audit data.

Audit Trail (1) A chronological set of records of system activity [RS91].

The terms audit log, activity log, and system log are often used interchangeably

with audit trail in computer security literature.

We de�ne an audit trail to be a record of system activity.

Intrusion (1) inappropriate use of a computer system [Sma88]. (2) penetration of a

computer system by an outsider [HK88, JDS91].

The �rst de�nition refers to inappropriate use by either a legitimate user or

an external penetrator. The second de�nition refers only to a computer abuse

originating from outside the system. The conventional meaning of \intrusion"

is entering by force [Gur84], implying an outside force breaking in.

For this thesis, intrusion is de�ned as an external penetration of the computer

system.

13

Intrusion Detection (1) identifying individuals (users or automated attackers) who

are using or attempting to use the computer system without authorization

or who have legitimate access but are attempting to abuse their privileges

[MHL94].

Though the term \intrusion" is sometimes limited to external penetrators only,

the term \intrusion detection" is normally used to encompass identi�cation of

both insider threats and external penetrators.

For this thesis, intrusion detection will refer to identifying any attempted im-

proper use of the system, whether by an authorized user or a system penetrator.

Misuse (1) inappropriate use of the computer system. (2) inappropriate use of

the computer system by an insider [JDS91]. (3) known attacks that can be

characterized [CS95].

The �rst de�nition refers to inappropriate use by either a legitimate user or

an external penetrator, while the second de�nition refers only to abuse by a

legitimate user. The third de�nition refers to activity that is detected by the

misuse intrusion detection model (see section 1.3.1).

For this thesis,misuse is de�ned as an inappropriate use of the computer system.

Misuse Detection (1) identifying attempts to inappropriately use the computer

system. (2) a model of intrusion detection that is based on identifying known

patterns of misuse (see section 1.3.1).

For this thesis,misuse detection will refer to identifying any attempted improper

or inappropriate use of the system. We use misuse detection and intrusion

detection synonymously. When referring to the model of intrusion detection,

the term misuse detection model is used.

Through the remainder of this thesis, the term misuse detection will be used

instead of the term intrusion detection because intrusion usually connotes an external

or outside attack.

14

1.6 A Model of an Auditing System

In this section, we develop a model of an auditing system that will serve as a

framework during the review of previous work in the area of auditing systems in

chapter 2. A well de�ned auditing system has a wide variety of potential uses in

many areas including accounting, security, recovery, and privacy assurance [Bon81].

An auditing system involves the collection and analysis of information on computer

system activity.

In [Bis89], Bishop presents a model of security monitoring that distinguishes be-

tween the action of collecting the data, which he terms logging, and the action of

analyzing the data, which he terms auditing. In many computing systems, separate

components perform each of these actions. For example, in security monitoring for

misuse detection, the operating system may log the system activity to an audit trail,

while a separate misuse detection system analyzes the data stored in the audit trail.

Unfortunately, in much of the literature regarding misuse detection, the terms logging

and auditing are used interchangeably.

In this work, we use the terms audit data collection and audit data analysis to refer

to the two separate actions. We also use the term auditing system to encompass both

the process of audit data collection and the process of audit data analysis. Figure 1.2

presents the simple model of an auditing system.

Audit Data
Collector

Audit Data Audit Data
Analyzer

Figure 1.2 : Simple Model of an Auditing System

The structures of many early misuse detection systems closely match the simple

model of an auditing system [Sma88, VL89]. Often, a �le is used to transfer the audit

trail between the audit data collector and the audit data analyzer. Problems arise

15

for auditing system developers when analyzers are migrated to di�erent audit data

sources (collectors). No standard interface for audit trails is widely accepted, leading

to format and content incompatibilities between di�erent sources of audit data. An

ongoing e�ort in the auditing research community is to develop a widely-accepted

standard audit trail interface. Work towards this e�ort is discussed is section 2.2.

Problems arise with the simple model of an auditing system when the auditing

system is extended to monitor a distributed computing system. Often, the distributed

system includes multiple audit data collectors and sometimes even multiple audit data

analyzers, all possibly residing on physically separate components of the system. A

direct interface, such as a �le, between the collectors and generators is no longer

an option for communication in the distributed environment. To help alleviate the

data transfer and management problems in a network environment, the concept of a

distributed auditing service arose. A distributed auditing service provides mechanisms

for gathering data from the audit data collector(s) and disseminating requested data

to the audit data analyzer(s) throughout the distributed system. Figure 1.3 presents

the model of an auditing system in a distributed environment. Distributed auditing

services are discussed in section 2.3.

16

Audit Data
Collector

Audit Data

Audit Data
Collector

Audit Data
Collector

Audit Data

Audit Data

D
i
s
t
r
i
b
u
t
e
d

A
u
d
i
t
i
n
g

S
e
r
v
i
c
e

Audit Data
Analyzer

Audit Data
Analyzer

Audit Data

Audit Data

Figure 1.3 : Model of an Auditing System in a Distributed Environment

1.7 Misuse Detection Challenge of Inadequate Audit Data

A major challenge in misuse detection is that current audit data is inadequate for

misuse detection. Audit data collected by conventional operating systems is inade-

quate for misuse detection in that it does not meet the needs of misuse detection.

Though conventional operating system audit trails provide information that is poten-

tially useful for uncovering attempted misuse, such audit trails omit information that

is relevant to detecting misuse [Lun93, Law96, CDE+96]. Misuse detection system

developers recognize that the audit data provided by conventional operating system

do not meet the needs of misuse detection, but the needs of misuse detection are not

fully understood and the adequacy requirements for audit trails are not well de�ned.

A signi�cant problem that must be solved is determining the audit data needs of

misuse detection [BEF+91, SBD+91a].

To compound the problem of audit data from conventional operating systems

being inadequate, di�erent developers considered di�erent data relevant resulting in

audit trail incompatibilities [Law96]. Misuse detection systems analyze information

17

and correlate events from multiple machines. A network computing system often

consists of a variety of computer systems, each potentially having a di�erent auditing

mechanism and audit trail, further complicating the misuse detection system's task.

An adequate audit trail standard that gains wide acceptance is needed to alleviate

audit trail incompatibilities across machines. A few standards have been proposed

and one standard, the Department of Defense's Trusted Computer System Evaluation

Criteria [Nat85], has been widely accepted. Unfortunately, these standards do not

adequately support misuse detection needs.

This work explores the above problems. A study comparing the audit data usage

of a number of host-based misuse detection systems with the audit data collection

capabilities of a number of conventional operating systems is presented. A number

of misuse detection systems that analyze host-based audit trails are examined, and

the audit data used by each system are outlined. Audit facilities of a number of

conventional operating systems are also examined, and the audit data collected by

each are outlined. We then compare the audit data requirements of the host-based

misuse detection systems with the capabilities of the conventional operating systems.

We identify the audit data that must be provided by an operating system to meet

the needs of the reviewed misuse detection systems, and we examine how well the

reviewed operating systems are meeting these audit data requirements. The results

of this study are an important step toward the development of an audit trail with

wide acceptance that adequately supports misuse detection needs. The results aid

in determination of what data content should be provided by operating system audit

trails to adequately support misuse detection needs.

1.8 Thesis Organization

The �rst chapter of this thesis provided background on computer crime, computer

security, misuse detection, and audit trails. Chapter 2 discusses previous work in

auditing system research. Chapter 3 examines existing misuse detection systems and

the operating system generated audit data used by each. Chapter 4 examines auditing

18

facilities of conventional operating systems and the data collected by each. Chapter

5 compares the audit data requirements of the host-based misuse detection systems

with the audit data collection capabilities of the conventional operating systems. The

�nal chapter of this thesis presents our conclusions and future work.

19

2. RELATED WORK

In this chapter we outline previous work performed in the area of auditing systems.

In section 1.6, we developed a model of an auditing system to provide a framework

for the research reviewed in this chapter. In section 2.1 prototype operating systems

that incorporate extended audit data generation capabilities are examined. Next,

work towards the development of a standard audit trail interface for content and

format is reviewed in section 2.2. Distributed auditing services, a relatively new area

of research, are presented in section 2.3. Finally, in section 2.4, unresolved auditing

issues and challenges to misuse detection are discussed.

The requirements imposed on audit data by a number of audit data analysis sys-

tems for misuse detection are examined in chapter 3, while the current state of audit

data collection facilities in conventional operating systems is examined in chapter 4.

In the next section, the audit generation facilities of a number of prototype \secure"

computing systems is reviewed.

2.1 Operating Systems with Extended Audit Generation Capabilities

A number of \secure" operating systems have been developed with enhanced se-

curity features not found in conventional systems. Many of these systems include

extended audit generation capabilities. In this section, we review the goals and fea-

tures of the audit generation mechanisms of a few of these secure operating systems.

Each of the following systems does provide a possible standard for an audit trail

interface but, unfortunately, each of the audit trails is closely related to a particular

operating system and does not easily extend to support other operating systems. The

projects were not trying to develop a general-purpose audit trail interface, and their

20

development experiences provide insight and pitfalls to avoid in auditing system devel-

opment. Ideally, the successful ideas developed during the research and development

of these secure operating systems will eventually transfer to conventional systems.

2.1.1 The Compartmented Mode Workstation

The Compartmented Mode Workstation (CMW) [Pic87] is a prototype secure sys-

tem built by The MITRE Corporation as an extension of the UNIX 4.2BSD operating

system. The two main objectives of the CMW auditing subsystem are to allow the re-

construction of events leading up to a security violation and to detect and respond to

attempts to violate security. The main requirements of the CMW auditing subsystem

include:

� Collect audit data from processes that have been granted the privilege to gen-

erate their own audit records.

� Collect audit data on all command information entered by users.

� Collect audit data concerning access to all objects.

� Collect audit data concerning all other security relevant events.

The system developers examined a number of data collection and data storage

concerns, and also explored issues surrounding the incorporation of the auditing sub-

system in the overall design of the CMW system. The CMW auditing subsystem

allows pre-selection of audit data before collection, and further selective reduction of

the collected data using an audit reduction program.

For each audited event, data collected include user ID, process ID, parent process

ID, date, time, success/failure, and the IDs and/or sensitivity labels of any involved

processes or objects. The system does not always explicitly collect the data if the

data can be deduced during audit reduction from other collected data. Twenty-two

types of events are audited, with each type of event being tied directly to a system

routine. The direct mapping from events to auditable routines leads to the system's

21

audit trail format being dependent on the CMW operating system, and thus also on

UNIX.

In the CMW, audit collection is performed at both the application level and

the operating system level. The developers felt that although the audit collection

performed at the operating system level is generally su�cient to meet audit data

requirements, operating system generated audit data is voluminous. Application

level audit collection by trusted applications was incorporated to reduce the volume

of audit data generated and to make the trails easier to comprehend. If a CMW

application has been granted the ability to audit, then the operating system level

audit collection is disabled for that process.

2.1.2 SunOS MLS System

SunOS MLS [Sib88] is a a secure distributed operating system developed by Sun

Microsystems, targeted for evaluation at the B1 level of the Trusted Computer System

Evaluation Criteria [Nat85]. The SunOS MLS system is a variant of Sun's standard

SunOS operating system, version 4.0, and includes extended audit data generation

capabilities. The project explores how to perform useful audit data collection in

distributed systems.

A SunOS MLS system is comprised of one or more physical machines connected by

a local area network. A single system image is maintained by the system independent

of the individual physical machines in the system. All machines share the same �le

system and administrative database so �le names and user identities have the same

meaning regardless of location on the system. The single system image is bene�cial

to auditing, allowing straightforward merging of audit data across machines. System

administrators view and analyze the audit trail as a system entity, even though the

data was generated by numerous independent machines.

In conjunction with the single system image, the SunOS MLS system maintains

a unique user identity called the audit user ID through all activities performed by

the user between login and logout. The audit user ID is inherited by all descendants

22

of the initial login process and is maintained when a user issues the su command

or rlogin command to initiate a session on another machine. The audit user ID

provides accountability back to the user who initially logged into the system.

The SunOS MLS project focuses on developing secure mechanisms for collection,

transmission, storage, and merger of audit trails. The SunOS MLS project does not

explore the audit data content requirements imposed by distributed processing in

depth, but the project does present a standard audit �le format for distributed data

collection. The format allows for variable-length records, but the record �elds are

implicitly de�ned and are tied to the UNIX operating system. The presented audit

�le format, with �xed �elds, does not allow for easy extension or modi�cation to

support other systems or goals.

2.1.3 The VAX Security Kernel

The VAX security kernel [SM90] is a prototype system developed by Digital Equip-

ment Corporation to meet the requirements of the A1 level of the Department of De-

fense Trusted Computer System Evaluation Criteria [Nat85]. The security kernel is

implemented as a virtual machine monitor (VMM) and has extensive audit generation

capabilities.

The VAX security kernel's auditing subsystem is designed to be a production qual-

ity system while meeting the requirements of an A1 class secure system. Requirements

for the auditing facility include:

� Create, maintain, and protect an audit trail.

� Support an administrative role with control over the auditing facility.

� Ability to selectively generate audit data based upon a user's identity and/or

an object's security level.

� Monitor and signal impending security violations.

� Respond with defensive actions against attempted security violations.

23

� Record any override of human-readable labeled output.

� Audit known, auditable covert channels.

Two main types of events are audited by the VMM security kernel: object ref-

erences and command references. The information recorded with each event include

event name and category, event status, auxiliary data speci�c to the event, caller

routine's name, date and time, and the subject's name, type, access class, rights, and

privileges. Application level auditing is not incorporated in the project.

The project examined the many constraints placed on an auditing subsystem

by the goal of meeting the requirements of an A1 class system. For example, one

interesting result of architecture constraints is that the event recording an object

reference always precedes the event recording the command that induced the object

reference. The order is unusual and increases the work of audit reduction tools, but

is consistent for all commands in the system.

The audit trail created and maintained by the VAX security kernel is limited in

scope. The data collected by the auditing system is speci�c to one operating system,

namely the VAX security kernel, and the gathered information does not support

merging across platforms in a distributed system. The project does examine the

many constraints imposed on A1 class systems that are not issues in conventional

operating systems.

2.2 A Standard Audit Trail Interface

Development of a standard audit trail interface that adequately supports security

goals and that gains wide acceptance is an extremely important step in overcoming

incompatibility issues facing misuse detection systems today. Proposed audit trail

standards focus on de�ning a standard format and/or a standard content for the

data contained in an audit trail. In the following sections, proposed standards in

both areas are explored.

24

2.2.1 Audit Trail Format Standards

We begin by reviewing proposed standards for the format of audit trails. A stan-

dard format with wide acceptance would help overcome incompatibility and interop-

erability problems currently faced by developers of audit data analysis systems. A

standard format would allow the interchange of data from multiple audit sources and

facilitate collaborative analysis of data.

2.2.1.1 Bishop's Standard Audit Trail Format

Bishop [Bis95] recognized the need to correlate audit data from many di�erent

heterogeneous systems for misuse detection. A standard format simpli�es audit trail

analysis, allows reconciliation of trails from di�ering systems, and facilitates interop-

erability in a networked environment. Bishop states that a standard format must be

both extensible and portable to meet the needs of di�erent, heterogeneous systems

and transportability across various systems and network protocols. Bishop de�nes a

standard log record format that is both portable and extensible.

To meet the need of extensibility, neither the length nor number of �elds is �xed in

Bishop's record format. The �elds are self-de�ning, separated with a �eld separator

('#') and, delimited by start and stop symbols ('S' and 'E'). To meet the need of

portability, all values are ASCII strings. This representation avoids the issues of byte

ordering and oating-point format. An example log record for a UNIX command in

Bishop's format could look like:

#time=234627364#login_id=bishop#role=root#UID=384#file=/bin/su#I#

#devno=3#inode=2343#return=1#errorcode=26#host=toad\79\#E#

Bishop's format does not attempt to standardize the events or �elds of an audit

trail record, but rather focuses on the needs of information interchange. A common

record format is an important step towards interoperability and correlation of audit

data in distributed systems.

25

2.2.1.2 Normalized Audit Data Format (NADF)

The Normalized Audit Data Format (NADF) [Mou95, Mou97] was de�ned by the

developers of the ASAX misuse detection system [HCMM92, MCZH95, Mou97] to

provide a degree of operating system independence. Translation of native audit trails

to the NADF �le format allows the ASAX system to have a degree of target system

independence by avoiding the need to tune the misuse detection system for every

possible source of audit data.

A NADF audit trail is a sequential �le of NADF records. During translation, the

audit records of the native audit trail are abstracted into a sequence of audit data

values. Each audit data value is stored in a separate NADF record consisting of three

�elds:

� Identi�er { the type of the audit data value.

� Length { the length of the audit data value.

� Value { the audit data value.

Theoretically, any audit data value can be represented by a NADF record. The

NADF format does not standardize the types of possible audit data values. The

developers focused on developing a normalized format that allows straightforward

translation of native �les into a universal format that provides a degree of system

independence.

2.2.1.3 svr4++ Common Audit Trail Interchange Format for UNIX

svr4++ [Sma94] is a proposed audit trail standard to �ll the need for a common

audit trail interchange format. The objectives of the standard include coverage of net-

work and host events, support of application de�ned events, and support of multiple

vendor versions of the UNIX operating system.

The basic structure of a svr4++ record is presented in table 2.1. The miscellaneous

data �eld(s) allow for incorporation of additional information into the record that are

not covered by the basic �elds.

26

Table 2.1 : svr4++ Basic Record Structure

Field Description

Time Date and time.
Event Type Audit event type.
Process ID Process identi�er
Outcome Event outcome; success or failure.
User IDs Full description of the subject's user identi�ers.
Group IDs Full description of the subject's group identi�ers.
Session ID Identi�er of session to which the process belongs.
Security Level MAC (Mandatory Access Control) information for the

subject of the event.
Object
Description

Information about the object(s) a�ected by the event.
Description includes object name, type, access control
information, etc.

Miscellaneous
Data

Miscellaneous event-speci�c data.

27

The svr4++ standard is tailored to the UNIX operating system, leading to prob-

lems with non-UNIX-based platforms. Additionally, the standard speci�es the basic

information that should be recorded with each event, but not what events should

be recorded. However, the standard never attempted to standardize the audit event

types but rather focused on the problem of a need for an audit interchange format.

2.2.2 Audit Trail Content Standards

The need for an audit data interchange format is not the only problem facing

auditing system developers. The content of the audit trails must also be standardized,

along with format, to support interoperability.

2.2.2.1 DoD Trusted Computer System Evaluation Criteria

The DoD Trusted Computer System Evaluation Criteria (TCSEC) [Nat85, Nat87]

is a standard created by the National Computer Security Center against which a

computing system can be evaluated for security assurance. The criteria are used as

an acquisition standard by DoD and also as a metric by organizations seeking a level

of security assurance in their computing systems.

A computer system is said to be secure if it controls \access to information such

that only properly authorized individuals, or processes operating on their behalf, will

have access to read, write, create, or delete information" [Nat85, p. 3]. The criteria

are divided into four divisions, A, B, C, and D, with systems meeting the criteria

of the highest division (A) providing the best level of security assurance. Within

divisions C and B, there are a number of subdivisions called classes. Classes C2

through A1 require the ability to audit security-relevant activities on the system.

Events that must be auditable in a class C2 system include use of identi�cation

and authentication mechanisms, introduction and deletion of objects, administrative

actions, and other security relevant events. A few additional auditable events are

required at the higher class levels. Information that must be recorded with each

audited event include:

28

� date and time of the event

� user identi�er

� type of event

� success or failure of the event

� origin of request for identi�cation/authentication events

� name of object for object introduction/deletion events

The DoD criteria provide guidelines requiring audit as a measure of security as-

surance, and the criteria have been widely accepted. Systems from many vendors

strive to be certi�ed at various divisions and classes of the criteria. Unfortunately,

the criteria lack speci�cs in many areas of audit. The criteria provide guidelines for

types of events to audit, but are not detailed enough to be an adequate standard for

audit trail content. Speci�c requirements are not given for audit content except at

a super�cial level. The requirement of recording \other security relevant events" is

too vague and open to individual interpretation. This is exempli�ed by the fact that

di�erent systems certi�ed as class C2 compliant have di�erent audit trail formats and

contents.

2.2.2.2 Security Criteria for Distributed Systems

In 1995, the Institute for Defense Analyses presented its Security Criteria for

Distributed Systems [GCBD95]. The functional requirements of the criteria only

apply to operating systems of distributed systems and do not address application

security. The criteria cover many di�erent aspects of audit including audit protection,

audit data, and audit for covert channel handling.

The criteria require various types of events be auditable. The events are grouped

into six categories:

� Access Control and Administrative Policy Events

29

� Data Con�dentiality and Integrity Policy Events

� Non-Discretionary Policy Events

� Availability Policy Events

� Cryptographic Policy Events

� Default and Dependent Events

The criteria also specify data to record with each event. Basic data that must

be recorded include date and time, subject attribute information, identity of host

generating the audit record, event class and event identi�er within the class, and

event outcome (success or failure). In addition, audit records for object creation and

destruction must include the name and policy attributes of the object. Authentication

audit records must include the subject's authentication status and subject's system

entry attributes.

The criteria briey discuss audit requirements for monitoring, and in some cases,

detecting violations of security policy. The criteria leave the chore of deciding what

actions should be audited to an organization's administrators and security policy

developers. The criteria also state that the information technology developers must

anticipate which actions are likely to be considered important by security policies and

to provide mechanisms to record these actions.

The Security Criteria for Distributed Systems attempt to solve the problem of a

need for a standard for audit trail content but fall short. The criteria are much too

broad on coverage of content for audit trails, and too much is left to the applications

developer and security o�cer. The guidelines for what should be audited and why

are not provided except in a few select cases.

2.3 Distributed Auditing Services

Distributed auditing services are a relatively new area of research. In [SM91],

many issues are discussed that e�ect auditing systems in a distributed environment

30

that are not concerns in a stand-alone system. Concerns raised by Schaen and McKen-

ney include the need for mechanisms for forwarding audit data among the components

of the distributed system, and the concern that some degree of auditing system man-

agement may need to be performed remotely. A distributed auditing service provides

mechanisms to address these needs.

2.3.1 Distributed Auditing System (DAS)

In [BEF+91], a Distributed Auditing System (DAS) architecture for the collection

and distribution of audit data in a distributed environment is presented. The archi-

tecture addresses the issues of transporting audit data from a collection point to an

analysis point, and management of audit functions from a remote location.

The DAS design consists of four major components: a virtual audit trail, an audit

agent, an audit manager, and an audit data communication service. The virtual audit

trail is operating system independent and is used to transport information collected by

the audit agent to the audit manager. The audit data communication service provides

mechanisms for transmitting the virtual audit trail and other messages between the

audit agents and the audit managers.

The possibility of using network management services as a model for a distributed

auditing system is examined because of the similarities between collecting audit data

and collecting network performance data. The network communication services de-

�ned by the Common Management Information Service (CMIS) along with the Com-

mon Management Information Protocol (CMIP) could be adapted to provide the nec-

essary communication services for transporting audit data between the audit agents

and the audit managers.

During the development of the framework for distributed auditing many di�culties

facing auditing systems in a network environment were examined, but many issues

still need consideration. For example, security assurance concerns during transmission

and storage of the audit data need to be addressed, and the needs of various audit

analysis tools for audit data must be explored.

31

2.3.2 Distributed Audit Service (XDAS)

The Open Group is developing the Distributed Audit Service (XDAS) speci�cation

[Ope97] as a standard for exchanging audit information in a distributed environment.

Functional requirements for a distributed audit service include:

� Audit Event Services { Collect, �lter, and analyze audit events generated on the

local host, and generate local alarms.

� Audit Service Management { Support remote and local administration of the

audit system. These requirements are out of scope for the XDAS speci�cation.

� Audit Event Management { Support con�guration and disposition of alarms,

provide standard calls for modi�cation of audit selection and �ltering parame-

ters, and modify con�guration of audit collection on distributed platforms.

� Audit Log Management { Store records in a protected audit repository and

ensure that the events recorded are a reection of what actually transpired.

� Audit Log Enquiry { Provide a standard format for audit trails for use by analysis

applications.

The objective of the XDAS speci�cation is to de�ne a set of generic audit events,

a portable audit record format, and APIs for submitting events to the audit service,

importing audit data from existing audit services to the XDAS audit service, con-

�guring event pre-selection criteria of the audit service, and reading records from a

XDAS audit trail. The set of generic events and corresponding default event classes

de�ned by the XDAS speci�cation are given in table 2.2. The audit service is intended

to complement existing audit services, not to replace them.

2.4 Unresolved Auditing Issues and Misuse Detection

Many issues and concerns remain to be addressed in the area of auditing systems.

For example, a widely accepted standard for the format and content of audit trails is

32

Table 2.2 : XDAS Audit Events and Default Event Classes

Class Events

Account Management
Events

create, delete, disable, enable, query, and modify
account

User Session Events create, terminate, query, and modify user session
Data and Resource Man-
agement Events

create, delete, query, and modify date item

Service and Application
Management Events

install, remove, con�gure, query, disable, and en-
able service or application

Service and Application
Usage Events

invoke, terminate, query, and modify service or
application

Peer Association Events create, terminate, query, and modify an associa-
tion; receive data and send data via an association

Data and Resource Con-
tent Access Events

create, terminate, query, and modify an associa-
tion with data item; query and modify data item
contents

Exceptional Events start and shutdown system; resource exhaustion
and corruption; backup and recover datastore

Audit Service Manage-
ment Events

con�gure audit service; audit datastore full; audit
datastore corrupted

33

needed, along with mechanisms for managing audit data collection and distribution

in a network environment.

Unresolved auditing issues are a major challenge for misuse detection. A recent

study of the state of the art in misuse detection [Law96] found that inconsistency

in audit data from multiple sources is a fundamental challenge to misuse detection,

along with a lack of understanding of what events are relevant to misuse detection.

A standard for the format and content of audit trails that is adequate for misuse

detection and gains wide acceptance would resolve many current challenges facing

misuse detection developers.

The remaining chapters of this work present a study that addresses some of the

concerns facing misuse detection. In chapter 3, a number of misuse detection systems

are examined and the operating system audit data used by each are summarized. In

chapter 4, auditing facilities in conventional operating systems are examined and the

audit data collected by each are presented. In chapter 5, we compare the audit data

collected by the conventional operating systems with the needs of host-based misuse

detection systems. The results of this study can serve as an aid in determining what

data content should be provided by operating systems for supporting misuse detection

needs.

34

3. SURVEY OF MISUSE DETECTION SYSTEMS

This chapter surveys misuse detection systems and the operating system audit

data used by them to detect computer misuse. Analysis methods used by the sur-

veyed systems include statistical approaches, expert systems, signature analysis, state

transition analysis, and pattern-matching.

The misuse detection systems surveyed were selected based on their meeting a

number of criteria. First, each surveyed system must employ operating system gen-

erated audit data to detect system misuse. Misuse detection systems that do not

analyze operating system audit trails were not considered. The Distributed Intru-

sion Detection System (DIDS), discussed in section 3.1, analyzes both network and

host-based activity, but only the host-based audit trail analysis is examined in this

work. Second, each surveyed system must have information published describing its

design and how it employs audit data to uncover system misuse. Many commer-

cial systems, such as NetRanger [GT96] from WheelGroup Corporation, were not

considered because of proprietary information constraints. Third, each surveyed sys-

tem must have a methodology for uncovering system misuse. Some systems, such

as ASAX [HCMM92, MCZH95, Mou97], focus on providing general mechanisms for

data stream analysis rather than developing a speci�c methodology for detecting sys-

tem misuse and thus were not selected. The �ve misuse detection system examined

in this chapter are DIDS, examined in section 3.1, IDIOT, examined in section 3.2,

NADIR/UNICORN, examined in section 3.3, NIDES, examined in section 3.4, and

STAT/USTAT, examined in section 3.5.

In all the surveyed systems, the audit trail analysis can be viewed as having two

stages, a preprocessing stage and an analysis stage. Figure 3.1 is a pictorial represen-

tation of the two stages of audit trail analysis for misuse detection. The preprocessor

35

imports \raw" audit data generated by the operating system and converts the data

into a standard representation expected by the analysis engine. The analysis engine

imports the reformatted audit data from the preprocessor and analyzes the data to

detect suspicious activity or misuse. Reports or other indicators of suspicious activity

and outright misuse are then output by the analysis engine.

Operating System
Generated
Audit Data

Reformatted
Audit Data

Reports of
MisuseAnalysis

EnginePreprocessor

Figure 3.1 : Stages of Audit Trail Analysis in a Misuse Detection System

Our survey of misuse detection systems focuses on identifying the data used by

the host-based analysis systems to detect computer misuse. For each misuse detection

system, an overview is presented that discusses how the system analyzes operating

system information to detect system misuse. We present the standard data format

employed for misuse detection along with any additional data, not provided by the

operating system audit trail, that are used by the system to detect misuse. The

content of the standard formats illustrates the audit data that the system developers

felt were important, and therefore should be available during analysis. The next

chapter surveys the operating system sources of audit data.

3.1 The Distributed Intrusion Detection System (DIDS)

The �rst misuse detection system examined in this chapter is the Distributed

Intrusion Detection System (DIDS) [BSD+91, SBD+91a, SBD+91b, SSTG92], a sys-

tem that combines distributed monitoring and data reduction with centralized data

analysis. The system monitors host machines as well as the network itself, allowing

for detection of distributed attacks against a networked computer system. Aggrega-

tion and correlation of multiple data sources by DIDS allows the system to detect

36

DIDS Director

LAN
Monitor

Host
Monitor

notable
 events

 notable
 events

Figure 3.2 : DIDS Architecture1

distributed attacks whose activity recorded in any single source may not appear sus-

picious.

The DIDS architecture, shown in �gure 3.2, includes a host monitor for each host,

a LAN monitor for each LAN segment, and a central DIDS director. Each host

monitor collects and analyzes audit records from the host's operating system, and

notable activity is then forwarded to the director for further analysis. Similarly, the

LAN monitor observes network tra�c and reports notable network activity to the

DIDS director for further analysis. The DIDS director employs an expert system to

analyze the notable events from the host and LAN monitors and to report suspicious

activity or misuse to the security o�cers.

The host monitor is the DIDS component of interest in this study because it

is the component that analyzes operating system-generated audit data. The host

monitor operates on a Sun SPARCstation running SunOS 4.1.1 or later with the

Sun Basic Security Module (BSM) providing extended auditing of the system. The

host monitor, whose structure is illustrated in �gure 3.3, consists of an audit data

preprocessor, three analysis components that act in parallel, and a communication

agent for communicating with the DIDS director. The preprocessor converts BSM

audit data into the standard representation expected by the analysis components. The

1Adapted from [SSTG92, �gure 2].

37

notable events component �lters audit data and isolates notable events to forward to

the DIDS director. The pro�les and signature components analyze audit data to

detect local misuse and generate compilations of suspicious activity to forward to the

DIDS director.

Profiles
Component

Notable Events
Component

Signatures
Component

Preprocessor

BSM

Host Communication
Agent

Figure 3.3 : Host Monitor Structure2

The pro�le analysis component [SSTG92] of the DIDS host monitor is actually a

version of the HAYSTACK [Sma88] misuse detection system that has been modi�ed

to process data in the host audit record (HAR) format. HAYSTACK is designed to

reduce voluminous audit data to short summaries of user behaviors, anomalous events,

and security incidents. The pro�le analysis component performs two di�erent kinds

of statistical analysis. The �rst kind of analysis assesses characteristics of the user's

behavior compared against expected characteristics of particular types of computer

misuse. The second kind of analysis detects trends or tendencies in a user's behavior

2Adapted from [SSTG92, �gure 3].

38

over time. The results of the statistical analysis are forwarded by the host monitor

to the DIDS director for further analysis.

The signature analysis component [Sna91, SS92] of the DIDS host monitor recog-

nizes sequences of events as previously de�ned attack activity. The signature analysis

component analyzes the audit data, building the context surrounding each user in

the system. During signature analysis, each new event is analyzed with respect to

the current context. An expert system examines the current event, in the current

context, to determine if one of a set of attack signatures is matched. Reports of

matched signatures are forwarded to the DIDS director for further analysis.

The host monitor audit record format is discussed further in the next section. For

a more detailed discussion of the overall operation of DIDS or the host monitor, refer

to [SBD+91b, SSTG92].

3.1.1 The DIDS Host Monitor Audit Record Format

The host monitor preprocessor converts BSM audit records to the host audit

record (HAR) format, outlined in table 3.1. Each HAR represents a single event

where a subject performs an action on an object. Currently, each HAR is derived

from a single BSM audit record, though the developers felt that in the future it may

be useful to consider events derived from a sequence of operating system generated

audit records.

The HAR format includes information provided by the BSM audit record plus

two new derived data items, an action and a domain, which are intended to minimize

operating system dependencies. Actions characterize activity, while domains charac-

terize the objects of the activity. Objects include �les, devices, and processes, and

an object's domain is determined by its characteristics, function, or location in the

system. The eleven DIDS actions are listed in table 3.2, and the ten possible domains

of an object are listed in table 3.3.

Domains are ordered, and an object is assigned to the �rst applicable domain.

Domains provide an important abstraction that allow assertions about the nature of

39

Table 3.1 : Host Audit Record (HAR) Format

Field

Monitor ID
Host ID

Audit UID
Real UID

E�ective UID
Time

Domain
Action

Transaction
Object

Parent Process
PID

Return Value
Error Code

Table 3.2 : DIDS Actions

Action

session start
session end

read (a �le or device)
write (a �le or device)
execute (a process)
terminate (a process)
create (a �le or device)
delete (a �le or device)

move (rename a �le or device)
change rights
change user id

40

Table 3.3 : DIDS Domains

Domain Description

tagged objects of particular interest to intrusion detection
authentication objects providing system access control
audit objects relating to accounting and security auditing
network objects relating to use of the network
system objects relating to the operating system execution
sys info objects providing information about the system
user info objects providing information about users
utility objects providing services to users
owned objects relating to a user
not owned objects not assigned to a previous domain

41

a user's behavior to be made in a straightforward manner. For example, the assertion

that a user is writing to an object in another user's space is easily stated and evaluated

when objects are assigned to domains.

3.1.2 Audit Data Requirements Imposed by DIDS

The audit data supplied to DIDS must allow accurate derivation of pro�le mea-

sures for statistical analysis and detection of events and context for signature anal-

ysis. For statistical analysis, the features of a user's behavior that are pro�led must

be accurately monitored in the audit trail. For signature analysis, the user's context

changes must be recorded in the audit record along with all occurrences of events

relating to de�ned signatures. Additionally, information must be provided for proper

determination of an object's domain.

3.2 IDIOT Pattern Matching System for Misuse Detection

The next misuse detection system examined is the generic pattern matching sys-

tem for misuse detection developed by Kumar and Spa�ord [KS94, Kum95]. In this

system, security violations are encoded in misuse signatures as interrelationships

among events. Signatures are then matched against system audit trails to detect

security violations. IDIOT (Intrusion Detection in our Time) [KS95, CDE+96] is an

implementation of the model developed for the Solaris 2.3 operating system and the

BSM audit trail.

Misuse signatures are based on the notion of events. Events are identi�able

changes in some part of the system and are tagged with data. Common event tags

include the time of occurrence of the event and the IDs of user(s) and object(s) asso-

ciated with the event. A signature speci�es the structural interrelationships among

events that signify a misuse. A pattern representing a misuse signature must encode

the events, context, and invariants of the signature.

Each signature may include context, which must be represented by the pattern.

Accurate context speci�cation limits false negatives and unwanted matches. The

42

context may include preconditions that must be satis�ed, along with the values of

event tags. Preconditions verify that the system is in a state from which a misuse

may result if the actions speci�ed by the pattern are carried out. Patterns must also

represent invariants that must hold for a misuse to result.

The generic pattern matching model represents each misuse signature as an in-

stantiation of a Colored Petri Automaton (CPA). The interrelationships among a

misuse signature's events are represented by the CPA's states and transitions. A

CPA includes one or more start states and one �nal state, which are used to de�ne

the matching in the model. The context of event tags are represented by token colors,

and preconditions are represented by guard expressions. Invariants are speci�ed using

their own CPAs, which are similar to pattern CPAs.

The audit data necessary for pattern matching is dependent on the types of pat-

terns used for misuse detection. Kumar and Spa�ord developed a hierarchy for clas-

sifying misuse signatures. The classi�cation hierarchy is:

1. Existence { The fact that an event occurred is su�cient to detect the misuse.

2. Sequence { The fact that several events happened in strict sequence is necessary

to detect the misuse.

Two special cases of this category are:

(a) interval { Events happened an interval x apart.

(b) Duration { Events existed or happened for not more than nor less than a

certain interval of time.

3. Regular Expression Patterns { Signatures constructed as extended regular ex-

pressions involving events and AND as primitives.

4. Other Patterns { All other signatures that cannot be represented directly in

earlier categories.

Examples of patterns in this category include:

43

� Patterns that Require Embedded Negation { Patterns involving absence of

a match.

� Patterns that Involve Generalized Selection { Patterns involving a match

of any x� y out of x events.

3.2.1 IDIOT Canonical Audit Trail

IDIOT's architecture separates the front-end preprocessor, which converts system-

dependent audit trails to a canonical format, from the the back-end analyzer, which

performs the pattern matching. The IDIOT preprocessor converts Sun BSM audit

trails to the canonical audit format expected by the IDIOT analyzer.

The events supported by IDIOT's canonical audit trail are given in table 3.4.

Each event includes basic information that are common to all events such as the

identity of the user involved with the action. Each event also includes event-speci�c

information that describes a�ected objects, such as �les or processes, and provide

name, identi�cation, permission, and ownership information for the objects. The

basic attributes common to all events are:

� Time the event took place.

� Real user ID.

� E�ective user ID.

� Real group ID.

� E�ective group ID.

� User audit ID.

� Session ID.

� Process ID.

44

� Return status of system call.

� Process return value.

3.2.2 Audit Data Requirements Imposed by IDIOT

As noted by Kumar and Spa�ord, pattern matching for misuse detection is depen-

dent on the existence and ordering relationships of audited events. If a relevant event

occurs, then its occurrence must be recorded in the audit trail along with the event's

time of occurrence and length of duration. The existence, or absence in the case of

negation, of an event is important for accurate matching of all patterns, and accurate

timing information is necessary for ordering of events to determine the sequence of

activity. If a relevant event is incorrectly audited or timing information is incorrectly

recorded, then an actual misuse may not be correctly matched or a false misuse may

be incorrectly matched.

The temporal ordering of events is not the only requirement of pattern speci�-

cation; representation of context is also important. Context includes pre-conditions

that must be met before matching the pattern, and expressions involving the tagged

data values monitored with events. The audit trail must provide information such

that context and pre-condition states can be accurately accessed, and the occurrence,

or absence, of events of interest are accurately detected during pattern matching

analysis.

3.3 The NADIR/UNICORN Misuse Detection System

The next misuse detection system examined is the Network Anomaly Detection

and Intrusion Reporter (NADIR) [JDS91, HJS+93], a prototype misuse detection

system developed by Los Alamos National Laboratory. NADIR employs an expert

system to identify misuse scenarios in summaries of user activity. The system has

been operational since 1990 at Los Alamos, monitoring a variety of network systems

and services.

45

Table 3.4 : Events Supported by IDIOT's Canonical Audit Trail

Events

EXEC, EXECVE
LINK, SYMLINK
MKNOD
LOGIN
SU
EXIT
OPEN R, OPEN RC, OPEN RT, OPEN RTC,
OPEN RW, OPEN RWC, OPEN RWT, OPEN RWTC,
OPEN W, OPEN WC, OPEN WT, OPEN WTC
ACCESS
CHDIR
CLOSE
FORK, VFORK
LSTAT, STAT
UNLINK
CREAT
CHMOD
CHOWN

46

The target system for NADIR is the Integrated Computing Network (ICN), Los

Alamos National Laboratory's main computer network. This network includes su-

percomputers, workstations, network service machines, local and remote terminals,

and data communication interfaces, and serves over 9,000 users [HJS+93]. The ICN

consists of four partitions with each partition at a de�ned security level. Specialized

ICN service nodes enforce the partitioning and provide network services such as user

authentication, access control, �le access and storage, and �le movement between

partitions.

While many misuse detection systems monitor network tra�c and/or host ma-

chines, NADIR monitors the ICN's service nodes. The three service nodes monitored

by NADIR are the Network Security Controller (NSC), which provides authentication

and access control, the Common File System (CFS), which maintains a partitioned

�le system, and the Security Assurance Machine (SAM), which authenticates all at-

tempts to down-partition unclassi�ed data. Each service node maintains an audit

trail of its activity. These audit trails are analyzed by NADIR to detect misuse on

the network. NADIR summarizes the audit data from the service nodes in weekly

statistical pro�les of user activity, and expert rules are then applied to the pro�les to

highlight suspicious activity.

In 1994, an addition to NADIR was developed called the UNICOS Real-time

NADIR, or UNICORN [CJN+95], to monitor the Cray supercomputers on the ICN.

UNICORN analyzes audit data collected by the UNICOS3 operating system along

with system con�guration information collected by an automated security scanner.

The information gathered by the security scanner allows UNICORN to identify misuse

that may not be evident in the standard audit record. As with NADIR, UNICORN

summarizes the audit and security scanner data in weekly statistical pro�les, which are

compared against expert rules expressing security violations and improper behavior.

NADIR and UNICORN maintain statistical pro�les of activity for each network

user and for a composite of all users. Individual pro�les summarize the activity of a

3Cray's proprietary version of UNIX

47

speci�c user, while the composite pro�le summarizes the activity of the entire system.

Each pro�le is composed of numerous �elds that summarize some aspect of activity

for the subject of the pro�le. Both NADIR and UNICORN derive the statistical

pro�les from system audit trails, but UNICORN also supplements the audit trails

with additional information gathered by a security scanner. During analysis, pro�les

are evaluated using expert rules that de�ne security violations and suspicious activity.

For a more detailed discussion on how the rules are developed or applied, refer to any

of [JDS91, HJS+93, CJN+95].

The audit data analyzed by NADIR are discussed in section 3.3.1, and the audit

record format used by UNICORN is discussed in section 3.3.2. The additional system

information collected by the security scanner for UNICORN are presented in section

3.3.3.

3.3.1 NADIR Audit Record Data

NADIR gathers audit data from three service nodes, the Network Security Con-

troller (NFS), the Common File System (CFS), and the Security Assurance Machine

(SAM). The audit records produced by the service nodes vary in format and content

for two primary reasons. First, the audit records di�er based on service task. NSC

records contain data about logons, while CFS and NCS records contain data about

�le handling activities. Second, the audit records di�er because the service nodes

were developed separately and involve a variety of hardware con�gurations and op-

erating systems. Each audit record, regardless of source, describes a single event and

contains the following information:

� Unique ID for the ICN User

� Date and Time

� Accounting Charge Code

� Error Code

48

The remaining data in each record are service dependent and are described in table

3.5. After the audit records generated by each service node have been collected by

NADIR, the data contained in each record are extracted, and the statistical pro�les

maintained by NADIR are updated.

Table 3.5 : ICN Service Dependent Audit Data

Service Service Dependent Audit Data

NSC Partition and ICN address of the machine from which the
authentication request originated.
Partition, classi�cation level, and network component
that the user requests to access.

CFS Machine from which the request originated.
Classi�cation of the CFS session.
Size, partition, �le name, and location within the CFS
directory structure of the �le.
Action requested, e.g. saving or deleting a �le.

SAM Name and CFS location of the �le to be down-
partitioned. where applicable.
Partition to which the �le is to be moved, where
applicable.
Action attempted, e.g. down-partition a �le.

3.3.2 UNICORN Audit Record Format

The audit data generated by the UNICOS operating system is reformatted by

UNICORN into a site-speci�c version of the svr4++ Common Audit Trail Inter-

change Format for UNIX [Sma94]. The developers of UNICORN decided to employ

a canonical audit record format to ease expansion of the system to other UNIX op-

erating systems. UNICORN's audit records include the basic data speci�ed by the

Common Audit Trail Interchange Format and additional site-speci�c data. Table 3.6

describes the UNICORN audit record format.

49

Table 3.6 : UNICORN Audit Record

Basic Data

Field Description

Timestamp Date and time at which the activity occurred.
Event Type Type of event described in this audit record.
Process ID Current process identi�er
Outcome Event outcome. If successful, a return code indicates the

type of activity. If unsuccessful, an error code indicates
the type of failure.

User IDs Full description of the subject's user identi�ers.
Group IDs Full description of the subject's group identi�ers.
Session ID Session to which the process belongs.
Security Level Security level of the event subject.
Object
Description

Information about the objects a�ected by the event, if
any.

Site-Speci�c Data

Field Description

Host Host Cray on which the attempted activity occurred.
Partition Security partition in which the attempted activity

occurred.
Event Source Source of the activity. For example, the workstation from

which the user logged on.
Compartment Security compartment of the attempted activity.
Category The integrity category of the attempted activity.
Activity Data Data speci�c to the type of activity being reported. It

describes the event itself. Each event type has its own
set of possible activity data values.

50

3.3.3 UNICORN Security Scanner

In addition to the UNICOS system audit logs, UNICORN also collects system

information with a security scanner that probes the computer system for signs of

misuse and con�guration vulnerabilities. The additional information gathered by

the security scanner allows UNICORN to identify misuse that is not evident in the

standard audit record.

The security scanner employed by UNICORN is similar in function to scanners

employed by COPS [FS90] or SPI [Bar91], but it is tailored to UNICOS. The security

scanner checks for system characteristics that may indicate security problems, such

as:

� Files modi�ed by a daemon.

� Minor changes in �le permissions with indirect consequences.

� Files with modi�cations that may violate policy.

� Modi�cations of critical system binaries.

� Flaws in critical �le formatting.

� Protection status of system directories, �les, and devices.

� Incorrect anonymous FTP con�guration.

� Other �le access permission problems.

� Insecure daemons.

� Invalid root con�guration.

After the UNICOS audit data and system information has been collected by UNI-

CORN, the data is analyzed and aggregated in statistical pro�les.

51

3.3.4 Audit Data Requirements Imposed by NADIR/UNICORN

Data reduction is a key part of the NADIR/UNICORN methodology. The reduc-

tion of the voluminous raw audit data into summary pro�les of user activity drastically

reduces the size of the database leading to easier storage, interpretation, and analy-

sis. In addition, the pro�les provide an easily understood summary of system activity

that is also suitable for examination graphically. The data supplied to NADIR or

UNICORN must be su�ciently detailed such that the resulting pro�les accurately

summarize the activity on the monitored systems.

Each event, which is described by a single audit record, is parsed independently

of the rest of the event stream. Unlike systems that look for interrelationships among

events, such as pattern matching or state transition analysis, NADIR and UNICORN

do not require a strict ordering of events in the audit trail. NADIR and UNICORN

require little context for many events, because events are often analyzed simply based

on their occurrence. For example, counts are maintained for incorrect logins and

incorrect �le settings without regard to the context of the failed logins or awed �le

settings. Even the events involving more context are normally only concerned with a

few attributes characterizing the action.

3.4 NIDES Misuse Detection System

The next misuse detection system examined in this study is the Next-generation

Intrusion Detection Expert System (NIDES) [Lun89, LTG+90, AFTV94, AFV95], a

real-time system that observes user behavior and ags signi�cant behavior deviations

as potential misuses. NIDES employs both a statistical analysis system and a expert

rule-base system for detection of misuse and suspicious behavior. NIDES is a misuse

detection system that performs real-time monitoring of a distributed system. A cen-

tral NIDES server analyzes audit data collected from the monitored target hosts to

detect unusual and suspicious activity.

The NIDES architecture is designed so that it can be applied to any number of

heterogeneous target systems. Each target system collects relevant audit data and

52

transforms the data into NIDES' generic audit record format. The transformed audit

data are then sent to the NIDES processor for analysis. NIDES has two misuse

detection analysis subsystems: a statistical analysis system and a rule-based expert

system. Figure 3.4 shows how the various NIDES components interact.

NIDES' statistical analysis component detects misuse by observing departures

from established patterns of use. NIDES determines whether observed behavior, as

reported in the audit trail, is normal with respect to past behavior, represented by

a historical pro�le of user activity. The statistical pro�les are composed of measures

that characterize observed behavior. The measures determine whether recently ob-

served activity is normal with respect to a pro�le of past activity. Con�guration

information grouping commands and objects into categories is used during statisti-

cal analysis to generalize activity of interest. As pro�les are continually updated over

time based on the audit data, NIDES adaptively learns expected behavior patterns. If

observed activity deviates signi�cantly from the user's historical pro�le, then NIDES

ags the activity as a potential misuse.

NIDES also employs a rule-based expert system to detect misuse. The expert

system encodes misuse scenarios and other suspicious activities in expert rules, and

NIDES ags observed activity as potential misuse if the activity matches any of the

encoded misuse scenarios. Rules are evaluated based on the event data in the audit

trail and on system con�guration information stored in a con�guration �le. The

rules describe suspicious behavior, known system vulnerabilities, and security policy

constraints.

A goal of NIDES is to be able to integrate data from numerous sources. The

NIDES Beta release supports three native audit data formats: SunOS C2, Solaris

BSM, and standard UNIX accounting. To facilitate integration, native format audit

data are converted to a generic audit data format before being passed to the analysis

subsystems. The next section discusses the NIDES audit data format. Additional

con�guration information is used by both the statistical and rule-based analysis com-

ponents. The additional con�guration information is discussed in section 3.4.2.

53

Target
Auditing
System

NIDES
Audit Data
Conversion

Process

native format
audit data

Target Host

NIDES
Audit Data
Collection

Process

NIDES
Statistical
Analysis
System

NIDES
Rule-Based

Analysis
System

NIDES format
audit data

NIDES format
audit data

NIDES format
audit data

NIDES
Resolver

statistical
analysis results

rule-base
analysis results

NIDES
User Interface

resolved
analysis
results

Target
Auditing
System

NIDES
Audit Data
Conversion

Process

native format
audit data

Target Host

NIDES format
audit data

Figure 3.4 : NIDES Architecture4

4Adapted from [AFTV94, �gure 2.1].

54

3.4.1 NIDES Audit Data Format

NIDES employs a generic audit data format to facilitate integration of data from

multiple, heterogeneous sources. The data �elds of a NIDES generic audit record are

shown in table 3.7. Each record has a subject and an action. In the NIDES paradigm,

a subject initiates actions that act on objects. Subjects are users of the system, and

objects include system entities such as �les and directories. A number of canonical

action types are used by NIDES to aid integration of events from multiple sources.

Tables 3.8 and 3.9 give the audit data actions supported by NIDES. The descriptions

for the �elds and actions are valid for SunOS C2, Solaris BSM, and UNIX accounting

audit data, but other application data mappings may apply di�erent meanings to

some of the �elds and/or actions.

3.4.2 NIDES Additional System Con�guration Information

In addition to the operating system generated audit data, NIDES employs sys-

tem con�guration information to describe and categorize commands and objects to

generalize both statistical measures and expert rules. The con�guration information

categorizes commands and objects into \classes" of activity for statistical analysis.

The con�guration information also describes and classi�es many items stored in the

expert system's factbase. The NIDES statistical and rule base analysis components

obtain con�guration information from a system con�guration �le, and if the system

con�guration changes, then the con�guration �le must be updated and NIDES anal-

ysis must be restarted for recon�guration.

The class information used by the statistical analysis component are summarized

in table 3.10. Classes are used by the statistical analysis component to determine cat-

egories for some statistical measures. For example, network commands and programs

are grouped in the Network Commands class.

The con�guration �le also describes and categorizes many entities in the comput-

ing system. The NIDES expert system component obtains con�guration information

55

Table 3.7 : NIDES Audit Data Fields

Field Description

Subject Identi�er of the user.
Timestamp Time at which the audit record was generated.
Sequence Number Sequence number assigned to audit record.
Action Canonical action type.
Command Name of the command executed.
System Call Name of the system call.
Error Number Error value generated by the system call.
Process ID Identi�er of the process.
Return Value Return value of the system call.
Target Host Name of the target host.
Target Sequence Number Sequence number assigned to audit record.
Tty Name of the controlling tty of the process.
Arpool Timestamp Time at which the audit record was received by

arpool.
Remote Host Name of the remote host involved with a distributed

or network related operation.
Audit User Name Real identi�er of the user.
Audit User Label Security label of the real user identi�er.
User Name E�ective identi�er of the user.
User label E�ective security label of the user.
Other User Name Additional, action-speci�c user identi�er.
Other User Label Additional, action-speci�c security label.
User Time Total CPU time spent executing non-kernel program

code.
System Time Total CPU time spent executing kernel program

code.
Real Time Total elapsed time of process.
Memory Used Average memory usage of the process.
I/O Number of characters transferred by process.
Read/Write Number of blocks transferred by process.
File0 Absolute pathname of the �rst relevant �le.
File0 Type Type of the �rst �le.
File0 Label Security label of the �rst �le.
File1 Absolute pathname of the second relevant �le.
File1 Type Type of the second �le.
File1 Label Security label of the second �le.
Audit Data Source Raw audit data type.
Argument List Command line arguments to a command.

56

Table 3.8 : NIDES Audit Data Actions, Part 1

Action Description

VOID Unrecognized action.
DISCON Disconnect by target host from NIDES arpool process.
ACCESS Access a �le's/directory's status information.
OPEN Open a �le/directory.
WRITE Write or modify a �le/directory.
READ Read a �le/directory.
DELETE Delete a �le.
CREATE Create a �le.
RMDIR Remove a directory.
CHMOD Change a �le's/directory's mode.
EXEC Execute a command.
CHOWN Change a �le's/directory's owner.
LINK Create a symbolic link or hard link.
CHDIR Change directories.
RENAME Rename a �le/directory.
MKDIR Create a directory.
MOUNT Mount a �le system.
UNMOUNT Unmount a �le system.
LOGIN Login to the system.
BAD LOGIN Unsuccessful login to the system.
SU Change user identity.
BAD SU Unsuccessful change of user identity.
EXIT Exit of a command.
LOGOUT Logout from the system.
UNCAT Not used.
RSH Execute remote shell command.
BAD RSH Unsuccessful execute of remote shell command.
PASSWD Password authentication.
RMOUNT Remote mount.
BAD RMOUNT Unsuccessful remote mount.
PASSWD AUTH Password authentication.
BAD PASSWD AUTH Unsuccessful password authentication.
KILL Kill a process.
CORE Dump core by process.
PTRACE Execute ptrace command.
TRUNCATE Truncate a �le.
UTIMES Execute utimes command.
FORK Fork, or create, a process.

57

Table 3.9 : NIDES Audit Data Actions, Part 2

Action Description

CHROOT Change root directory.
MKNOD Make a special �le.
HALT Halt the system.
REBOOT Reboot the system.
SHUTDOWN Shutdown the system.
BOOT Boot the system.
SET TIME Change the time of the system's clock.
SET UID Set the user ID.
SET GID Set the group ID.
AUDIT CONFIG Change auditing con�guration.
IS PROMISCUOUS Detect ethernet controller in promiscuous mode.
CONNECT Connect to the target host by another host.
ACCEPT Accept a connection by another host.
BIND Bind a name to a socket.
SOCKET OPTION Action involving socket option.

Table 3.10 : NIDES Con�guration Classes for Statistical Analysis

Class Description

Compilers Commands/programs that are compilers.
Editors Commands/programs that are editors.
Mailers Commands/programs that are associated with e-mail.
Shell Environments Commands/programs that are shells.
Window Commands Commands/programs associated with windows.
Network Commands Commands/programs that are network based or

remote.
Local Hosts Hosts that are local to the monitored network.
Temporary Files Temporary �les and directories that contain temporary

�les.

58

from this �le to initialize part of the expert system's factbase. The con�guration

information from the �le used by the expert system is summarized in table 3.11.

3.4.3 Audit Data Requirements Imposed by NIDES

The operating systemmust provide audit data that will accurately reect measures

and allow accurate matching of rules in the rule base. The audit trail must record

the occurrence of all events that may trigger rules in the expert system or change the

state of any measures in the statistical pro�les. Additionally, the system con�guration

�le must accurately reect the state of the computing system, and when the system

con�guration is modi�ed, then the system con�guration �le must be updated.

3.5 The STAT/USTAT State Transition Analysis Tool

The �nal misuse detection system examined is the State Transition Analysis Tool

(STAT) [Por92] for misuse detection. In state transition analysis, the actions that

an attacker performs to achieve a security violation are represented by a state tran-

sition diagram. A state transition diagram models a penetration as a series of state

changes that lead from an initial secure state to a target compromised state [Por92].

To uncover possible system misuse, a state transition analysis tool compares the

state changes of the monitored computer system to the state transition diagrams of

known penetrations. A UNIX-speci�c prototype of the tool, called USTAT, [Ilg92]

was designed for SunOS 4.1.1 and the Sun C2 Basic Security Module (BSM) audit

trail.

State transition analysis is intended to detect security incidents that lead to an

identi�able compromised system state. Not all compromises can be identi�ed from

analysis of system attributes alone. Thus, though an incident may lead to a compro-

mise, it may not be detectable through state transition analysis [Por92]. A security

incident is representable by a state transition diagram if the incident produces a vis-

ible change in system attributes, and the compromised state is recognizable without

knowledge external to the system. Types of security incidents that are representable

59

Table 3.11 : NIDES Con�guration Information for Expert System

Class Description

DOMAIN Internet domain names of all local domains.
HOME DIR Users and corresponding home directories.
KNOWN LOGIN Accounts that are commonly left unprotected.

For example, guest and anonymous.

LOG DIR Directories where log �les are kept.
LOGIN CONFIG Scripts executed upon login or shell execution.

For example, .login and .cshrc.

NOEXEC Programs normal users should not run. Pro-
grams normally only run by root.

PARANOID PROG Programs paranoid users may execute fre-
quently. For example, finger and ps.

PRIVATE DEVICE Private devices that abuser can use to eaves-
drop on or spoof another user. For example,
/dev/audio.

PRIVATE FILE Files that should be accessed only by the
owner. For example, .rhosts.

PROGLOCATION Names of directories where system �les reside.
PROGRAM System programs that should be executed only

from system directories.
RAREEXEC Programs users don't ordinarily run.
REMOTE FILE NO ACCESS Names of �les that remote users should not

access.
REMOTE FILE NO MODIFY Names of �les that remote users should not

modify.
REMOTE NO EXEC Programs that remote users should not

execute.
REMOTE NOT OK Users who are not authorized to log in

remotely.
ROOT OK Users authorized to become root.
SPECIAL FILE Files dealing with access control.
SPECIAL PROGRAM Special programs that should only be executed

by speci�ed users.
SPECIAL USER Special users that shouldn't execute anything

but a speci�ed set of programs.
SYSTEM SCRIPTS Shell scripts that reside in system directories.
TMP DIRNAME Temporary directories for the system.
TMP FILE Temporary �les that are OK to write into the

temporary directories.
USER TYPE Type identi�ers for special users.

60

by state transition analysis include unauthorized access, modi�cation, deletion, or

creation of data, and unauthorized access to user or administrative privileges.

The development of a penetration scenario involves �rst identifying the initial and

compromised states, and then identifying the key, or signature, actions necessary to

move the system from the initial state, through zero or more intermediate states, to

the compromised state. Signature actions are stated in the form \a subject performs

an action (on an object)." Each state is described by state assertions about system

attributes that must hold to successfully execute the penetration. The states and

actions are represented graphically as a state transition diagram. Audit data is an-

alyzed to detect signature actions and to determine if state assertions about system

attributes hold as a result of the actions. The audit trail must record every occur-

rence of a signature action, and also provide enough information to evaluate the state

assertions.

In the following sections the audit data used by STAT and USTAT are reviewed.

The STAT audit record format is presented in section 3.5.1, and the audit record for-

mat of the implemented USTAT system is presented in section 3.5.2. Then additional

information gathered by USTAT for testing state assertions are discussed in section

3.5.3. For additional information on the development of state transition diagrams of

penetrations, refer to any of [Por92, Ilg92, IKP95].

3.5.1 STAT Audit Record Format

In STAT, audit trails generated by the computing system are preprocessed to iso-

late data relevant to state transition analysis. Only data corresponding directly to

the signature actions and system attributes are passed for analysis. In addition, only

successfully executed actions are passed, because unsuccessful actions do not produce

perceivable state changes and thus are not taken into consideration during analysis.

Possible actions include object read, object write, object create, object delete, pro-

gram execute, program exit, modify owner object, modify object permission, modify

access privilege, and login. Audit records output by the preprocessor for STAT have

61

six �elds: Subject ID, Subject Permissions, Action, Object ID, Object Owner, and

Object Permissions. Table 3.12 provides a brief description of the �elds.

Table 3.12 : STAT Audit Record Format

Field Description

Subject ID Unique identi�er of the subject on whose behalf
the audit record was generated.

Subject Permissions Access privileges of the subject (e.g. security
level, e�ective UID, group membership, capabili-
ties, etc.).

Action Action performed by the subject (on the object).
Object ID Unique identi�er of the object whose access was

recorded. If no object access occurred, then this
�eld is null.

Object Owner Unique identi�er of the owner of the object. If no
object access occurred, then this �eld is null.

Object Permissions The access permissions associated with the object.
If no object access occurred, then this �eld is null.

3.5.2 USTAT Audit Record Format

In USTAT, the audit record preprocessor �lters and maps BSM audit records to

the USTAT audit record format. USTAT has a slightly modi�ed audit record format

from the original STAT design, because, though STAT was designed to be imple-

mented on any computer system, some modi�cations during the development of the

USTAT prototype were unavoidable [Ilg92]. Fields providing additional information

useful for further analysis of the penetration were added, but the essential idea of

having a subject, action, and object is preserved. Figure 3.5 gives the USTAT audit

record structure.

Of the 239 di�erent events audited by BSM, only 28 are used by USTAT. The

28 BSM events are mapped to ten di�erent USTAT actions. Table 3.13 lists the ten

di�erent actions of USTAT along with the corresponding BSM events. The �rst eight

62

Target

File System ID

Device Number

Inode Number

Group Owner

Owner

Permissions Mode

Object Name

Process ID

Time of Action

Action

Group ID

Effective User ID

Real User ID

OBJECT

ACTION

SUBJECT

Figure 3.5 : USTAT Audit Record Structure5

5Adapted from [Ilg92, �gure 4.4].

63

USTAT actions correspond directly to STAT actions. The last two USTAT actions,

rename and hardlink, are additions to the design. Login was dropped from the original

STAT actions during the development of USTAT.

Table 3.13 : USTAT Actions and corresponding BSM Event Types

USTAT Action BSM Events

Read open r, open rc, open rtc, open rwc, open rwtc,
open rt, open rw, open rwt

Write truncate, ftruncate, creat, open rwc, open rwtc,
open rw, open rwt, open rt, open rtc, open w,
open wt, open wc, open wtc

Create mkdir, creat, open rc, open rtc, open rwc, open rwtc,
open wc, open wtc, mknod

Delete rmdir, unlink
Execute exec, execve
Exit exit
Modify Owner chown, fchown
Modify Perm chmod, fchmod
Rename rename
Hardlink link

Rename and hardlink pose special problems because they are actions that in-

volve two object identi�ers that represent the same physical object. Each rename or

hardlink could be viewed as two actions, such as a �le creation and �le deletion in the

case of rename, but the fact that the two actions referred to the same object would

be obscured. Therefore, the USTAT developers decided to keep rename and hardlink

as signature actions. The login action was dropped because the developers decided

to follow the objects of the system instead of the subjects. For further details on the

selection of the BSM event types and mapping to USTAT actions, refer to [Ilg92].

64

3.5.3 USTAT Use of Additional System Information

The USTAT analysis engine derives state actions and tests state assertions with

the data from the input audit records. USTAT supports seven state assertions, listed

in table 3.14. Additional information, that are not supplied by the operating system

audit trails but that are needed for evaluation of state assertions, are acquired by

USTAT through direct access of the computing system.

One additional source of information is the system initializer, which initializes

the fact-base with �leset membership information. The USTAT fact-base groups �les

and directories that share certain characteristics into �lesets, and the state assertion

member asserts whether a given �le is a member of a given �leset. An example �leset is

all non-writable system executables. Once the fact-base is initialized, update routines

keep the fact-base up-to-date with the current state of the computing system.

Another state assertion that requires additional information for evaluation is the

shell script assertion. The shell script assertion is evaluated by opening the �le and

checking whether it contains \#!/bin/sh" in its �rst line. This dependency on the

current state of the �le system is problematic, especially if the analysis is done in batch

mode or at a remote site, but necessary because the assertion cannot be evaluated

using the audit data supplied by BSM.

3.5.4 Audit Data Requirements Imposed by STAT/USTAT

State transition analysis uses the system audit trail to monitor security-relevant

state changes that occur within the system. The system audit trail must record the

occurrence of all key, or signature, actions resulting in system state transitions along

with the values of system attributes used in evaluation of state assertions.

3.6 Results of the Survey

All of the surveyed misuse detection systems translate operating system generated

audit records into a standard format used during analysis. Each of the standard

formats includes information on the action recorded by the event, the subject causing

65

Table 3.14 : USTAT State Assertions

State Assertion Description

name(file var) = file name evaluates true if file var matches file name.
fullname(file var) = full path evaluates true if file var matches the path-

name full path.
owner(file var) = user id evaluates true if the owner of file varmatches

user id

member(file set; file var) evaluates true if file var is a member of the
�le set file set.

euid = user id evaluates true if the e�ective user id of the
subject of the last signature action matches
user id.

gid = group id evaluates true if the group id of the subject
of the audit record being processed matches
group id.

permitted(perm; file var) evaluates true if the permission bit given as
perm is set in file var's permission bits.

located(NWSD, file var) evaluates true if file var is located in any
of the directories in the NWSD (non-writable
system directories) �le set.

sameuser evaluates true if the subjects of the last two
signature actions are the same.

samepid evaluates true if the process id's of the last two
signature actions are the same.

shell script(file var) evaluates true if file var is a shell script with
the \#!/bin/sh" mechanism.

66

or requesting the action, and any objects e�ected by the action. The standard formats

often include additional information such as the time the event was recorded and the

audit source of the generated event.

During analysis, each misuse detection system analyzes the audit data recording

the activity on the monitored host system to detect changes in the system state that

may be indicative of system misuse. The statistical analysis systems, such as NADIR

and NIDES, use statistical models to represent historical user activity. When a user's

state di�ers signi�cantly from the state represented by the historical model, then the

activity is reported as a possible misuse. The pattern-matching, signature analysis,

and state transition analysis systems each model the system state changes that occur

with known misuse scenarios. The systems then analyze the state changes of the

monitored system to detect the represented misuse scenarios.

Each of these misuse detection systems requires that the audit data contain su�-

cient information so that the relevant system state changes will be accurately detected.

The operating system must provide enough information so that the misuse detection

systems' models are accurate reections of the state of the monitored computing sys-

tem. A number of audit data insu�ciencies have been noted by misuse detection

system developers. Developers noted that audit data often lacks user role informa-

tion, object domain information, and object content information. Application level

audit data is often insu�cient, along with auditing of network activity in a distributed

environment. The following sections discuss these inadequacies in further detail.

3.6.1 User Role Information

Cathy Stallings [Pri96a], a developer on the NADIR misuse detection project,

identi�ed the problem of not knowing the location of a user when analyzing a user's

activity. The records in the audit trail supplied to NADIR provide the user's name

but not the user's location in the distributed system. Stallings noted that the policies

governing a user accessing the system from a secure network connection are di�erent

from the policies governing the same user accessing the system from an unsecure

67

dial-up link. The idea was suggested of including a role indicator, along with the

user identi�er, in the subject description to characterize how the user is accessing the

computer system.

3.6.2 Tracking Users in a Distributed System

One challenge facing misuse detection in a distributed environment is tracking

users and objects as they move through the system. On a single host, user identi�ers

facilitate user accountability on the local system, but user identi�ers in conventional

operating systems are not coordinated across systems. The developers of the DIDS

misuse detection system try to overcome this obstacle by maintaining Network-user

Identi�cation (NID) [SSTG92] for each user to provide some degree of user account-

ability on a distributed system.

A network user identi�er is assigned to a user upon login to the monitored system,

and the identi�er is preserved throughout the user's session on the distributed system.

The network user identi�er is maintained when the user changes his/her user identity,

for example with the su command on a UNIX system, or when the user initiates

another login session on a di�erent host in the monitored system. With a network

user identi�cation, activity frommultiple host sessions, perhaps with di�erent account

names, could be attributed to a single source.

3.6.3 Object Domain Information

Many misuse detection systems group system objects that share characteristics

in sets, or domains, to increase the generality of the detection mechanisms [BSD+91,

AFTV94, IKP95]. Using domains allows assertions about objects to be made in a

straightforward, systematic manner, and facilitates development of general activity

encodings (e.g., rules, signatures, patterns, etc.) that are applicable to all objects in

the domain, rather than to one speci�c object.

The misuse detection system requires information to determine which domains

are applicable for a given object. Some systems, such as DIDS, use the contents

68

of the audit record to determine the domain. Other systems, such as NIDES and

USTAT, rely on a system con�guration initializer to initialize a database identifying

members of domains. The categorization of objects into domains is often subjective

and may depend on the policy for the computer system. The domain of an object

may be derivable after the occurrence of an event from a source other than the audit

trail, such as a con�guration �le. For example, whether a particular program is a

\compiler" can often be derived from the information in a con�guration database

rather than from the audit trail. Reliance on a system con�guration initializer may

prove problematic, especially with o�-line or remote monitoring of a computer system.

The decision to derive domain information from outside sources of data rather than to

deduce domain information directly from the audit trail has often been made because

the information is not available in the audit trail. The question as to which domain

information should be derived from static sources versus which information should be

collected directly in the audit trail remains to be answered.

3.6.4 Object Content Information

Audit trails typically provide a record of system activity, but the information

manipulated as a result of the activity is normally not recorded [Kum95]. For example,

audit logs often record that a �le is opened, and perhaps even modi�ed, but the actual

information modi�ed is normally not recorded in the audit trail. Content information

for objects manipulated by activity is required for detection of certain types of misuse.

For example, the misuse detection systemmay need to know if a critical �le's format is

awed after the �les' modi�cation to detect the development of a system vulnerability

[CJN+95]. Unfortunately, data characterizing an object's information content is often

absent from the audit trail.

One approach is to query the system when additional information is needed. This

approach is used by a number of misuse detection systems such as IDIOT and USTAT.

USTAT and IDIOT both directly access system �les for evaluation of shell-script

assertions. Queries for additional system information are problematic because the

69

analysis system may not have direct access to the target system, for example, if it

is being run at a remote site. Additionally, the system state may change between

the time the audited event occurs and the time the system is queried for additional

information.

Another approach taken by some systems is to supplement audit trails with ad-

ditional information that is periodically collected from the monitored system. For

example, UNICORN employs a security scanner that periodically gathers system

con�guration information that is used in conjunction with the operating system gen-

erated audit trail to detect system misuse. This approach is also problematic because

the scanner runs periodically, and so may not provide information reecting a system

problem immediately upon the problem's emergence in the system.

3.6.5 Application Level Audit Data

Few implemented misuse detection systems employ application level audit data,

possibly because such data is not commonly available with today's auditing systems,

but a number of system developers [Lun90, Kum95] advocate application level au-

diting. Both system call level and application level auditing have advantages and

disadvantages with respect to volume, complexity, and clarity of data recorded and

so should be considered during the design of an auditing system.

Auditing at low-levels makes it di�cult for a misuser to circumvent auditing.

Anderson [And80] points out the problem of clandestine users evading detection by

operating at levels of control below which audit data is collected. Unfortunately, low-

level auditing gathers a voluminous, complex, and highly detailed record of system

activity that may obscure the user's actions and intentions [Pic87]. Additionally, sys-

tem call auditing does not supply user level data leading to problems in distinguishing

which actions were requested directly by the user and which actions were initiated by

a program on behalf of the user [Pic87].

Application level audit data is more compact and less voluminous, possessing user-

level abstractions. It is also easier to characterize misuse activity at an application

70

level of abstraction because developers have an intuitive \feel" for activity at this level

[Lun90], and security policies, often the basis for determining if an activity is a misuse,

incorporate application level abstractions [Kum95]. A disadvantage of application

level auditing is that a user may obscure his/her actions through command and

program aliasing resulting in di�culty ascertaining what activity is really occurring

[Lun90].

3.6.6 Network Events Audit Data

The misuse detection system developers noted that auditing of network services is

insu�cient. For example, under Solaris BSM, rlogin and ftp events are generated, but

most other services, such as YP/NIS, NFS, and SMTP, provide little or no service-

level auditing [AFV95]. The lack of information is a problem for misuse detection.

The developers of NIDES noted the problem of lack of data on network services,

and incorporated the data collected by TCP-wrappers to supplement operating sys-

tem generated data [AFV95]. The developers of the IDIOT misuse detection sys-

tem noted the di�culty with lack of information on socket-related network events

[CDE+96]. The IDIOT developers suggest using a wrapper library for the socket

library to generate socket-related audit data.

3.7 Summary

Many di�erent methodologies have been developed for detecting misuse of a com-

puter system. This chapter provided an overview of �ve misuse detection systems

and examined the operating system data used by each. Each system transforms the

operating system generated audit data into a standardized format that describes the

action, subject of the action, and any involved objects. The audit data are analyzed

to detect system state changes indicative of misuse. The misuse detection system de-

velopers often �nd the audit data supplied by the operating system to be insu�cient

and resort to accessing the computing system directly for additional information.

Noted insu�ciencies include lack of information describing the subject's role, lack of

71

information on the object's domain and content, inadequate application level audit

data, and inadequate auditing of network activity.

72

4. SURVEY OF CONVENTIONAL OPERATING SYSTEMS

This chapter surveys the auditing systems of a number of conventional operating

systems and examines the record of system activity collected by each. The auditing

systems of the surveyed operating systems record security-relevant system activity in

audit trails. A security-relevant action made by a user results in the generation of an

audit event that is stored in the system's audit trail. An event describes the security-

relevant action and the user, the process acting on behalf of the user, and the system

objects involved in the action. The event often contains additional information such

as the time of the action, the user's privileges, the object's access permissions, and the

name of the application or system module generating the event. For each surveyed

operating system, we identify the data recorded by each auditing system. Many of

the surveyed auditing systems also possess mechanisms for simple audit data analysis,

but these mechanisms are not examined in this survey. At the end of the chapter, we

identify some limitations of auditing systems that have been encountered by misuse

detection system developers.

The operating systems were selected based on their meeting a number of crite-

ria. First, each surveyed system must have the capability to generate audit data

recording system activity. Second, each surveyed system must be \conventional" in

the sense that the system is applicable to general-purpose computing and has gained

acceptance in the general computing community. The secure operating systems dis-

cussed in section 2.1 were not considered because they never moved into the realm of

\conventional" operating systems. Finally, each operating system must have informa-

tion published describing its auditing facilities. We referred to the operating system

administration and reference manuals for obtaining information for this survey.

73

In section 4.1, the HP-UX auditing subsystem is examined. In section 4.2, the

OpenVMS auditing system is presented. In section 4.3, the BSM auditing system of

the Solaris operating system is presented. In section 4.4, auditing in the the UNICOS

operating system is examined. Finally, in section 4.5, auditing with the Windows

NT security log is examined. In chapter 5, we identify the audit data that must

be provided by an operating system to su�ciently meet the needs of the surveyed

misuse detection systems. We then examine how well the surveyed operating system

are meeting the audit data needs of the misuse detection systems.

4.1 HP-UX

The HP-UX trusted operating system [Hew95, Hew96], a version of the UNIX

operating system developed by Hewlett Packard, provides auditing of security rel-

evant events for analysis and detection of security breaches. The auditing system

records occurrences of access by subjects to objects for detection of attempts to by-

pass protection mechanisms or to misuse privileges. Audit records are produced by

security-relevant system calls, as well as by self-auditing applications.

Auditable events are categorized into several event types to simplify administrat-

ing the auditing subsystem. The HP-UX audit event types and associated system

calls and/or self-auditing applications are given in table 4.1. Some events belong to

multiple event types based on the varied operations of the system call or self-auditing

application.

Each HP-UX audit record consists of a header followed by a variable-length, event-

speci�c body. Information included in the header are:

� Time { Time the event completes in either success or failure.

� Process ID { Identi�er of the process being audited.

� Error { Success or failure of the event.

� Event Type { Identi�er of the type of audited activity.

74

Table 4.1 : HP-UX Event Types and Associated System Calls and Applications

Type Description Associated System Calls and
Applications

admin Log all administrative and priv-
ileged events.

stime, swapon, settimeof-
day, sethostid, privgrp, setevent, se-
taudproc, audswitch, setaudid, set-
domainname, reboot, sam, aud-
isp, audevent, audsys, audusr, chfn,
chsh, passwd, pwck, init

close Log all closings of objects. close
create Log all creations of objects. creat, mknod, mkdir, semget,

msgget, shmget, shmat, pipe
delete Log all deletions of objects. rmdir, semctl, msgctl
ipcclose Log all IPC close events. shutdown
ipccreat Log all IPC create events. socket, bind
ipcdgram Log IPC datagram transactions. udp user datagram
ipcopen Log all IPC open events. connect, accept
login Log all logins and logouts. login, init
modaccess Log all access modi�cations

other than Discretionary Access
Controls.

link, unlink, chdir, setuid, set-
gid, chroot, setgroups, setresuid,
setresgid, rename, shmctl, shmdt,
newgrp

moddac Log all modi�cations of object's
Discretionary Access Controls.

chmod, chown, umask, fchown, fch-
mod, setacl, fsetacl

open Log all openings of objects. open, execv, ptrace, execve, trun-
cate, ftruncate, lpsched

process Log all operations on processes. exit, fork, vfork, kill
removable Log all removable media events. smount, umount, vfsmount

75

For records generated by system calls, the body contains the call arguments, while

for application-generated records, the body contains a high-level description of the

event. To conserve space in the audit �le, a PID identi�cation record is generated

when a process is initiated. The data recorded in the PID record remain the same

for the lifetime of the process, and so are only recorded once per process in the audit

�le. The PID identi�cation record contains the following information:

� Process's Audit ID

� Real User ID

� Real group ID

� E�ective user ID

� E�ective group ID

� Parent's process ID

� Terminal ID

A few privileged applications perform self-auditing to provide a higher-level record

of system operations. The applications with self-auditing capabilities are listed in ta-

ble 4.2. To reduce the amount of audit data collected, some self-auditing programs

suspend auditing for the system call actions they invoke. Thus, only high-level de-

scriptions of actions by these self-auditing applications are recorded in the audit trail.

4.2 OpenVMS VAX

The OpenVMS VAX operating system [Dig96a, Dig96b] from Digital Equipment

Corporation provides an auditing system that supports monitoring of security-relevant

activity. Security auditing allows administrators to monitor users' activity on the sys-

tem and to reconstruct events leading up to attempts to compromise system security.

A security-relevant event is any activity that involves a user's access to the system or

76

Table 4.2 : HP-UX Self-Auditing Applications

Application Description

chfn Change �nger entry.
chsh Change login shell.
login The login utility.
newgrp Change e�ective group.
passwd Change password.
audevent Select events to be audited.
audisp Display the audit data.
audsys Start or halt the auditing system.
audusr Select users to be audited.
init Change run levels, users logging o�.
lpsched Schedule line printer requests.
pwck Password/group �le checker.

77

to protected objects within the system. The OpenVMS auditing system can record

both successful and unsuccessful security-relevant activity and allows applications to

contribute security event information to the audit log.

The security-relevant events recorded by the OpenVMS auditing system are di-

vided into a number of categories called event classes. The operating system audits

several event classes by default, and administrators can customize which event classes

are audited to meet the security needs of the local site. The event classes supported

by OpenVMS are given in table 4.3.

A security audit record is generated by the auditing system in response to a

security-relevant event. A security audit record consists of a header packet followed

by one or more data packets, as shown in �gure 4.1. The record structure allows

the record to be variable-length and event-speci�c. The information provided in the

header packet include:

� Record Type { Indicates the type of event that occurred.

� Record Subtype { Further de�nes the type of event that occurred.

� Facility Code { The code of the facility that generated the event. By default,

the code is zero indicating a system-generated event.

The body is composed of a number of data packets. Each data packet has a

packet type identi�er which is used to decode the information stored in the packet.

Header Packet

Data Packet

Data Packet

Data Packet

Figure 4.1 : OpenVMS Audit Record Structure

78

Table 4.3 : OpenVMS Event Classes

Event Class Description

Access Access requests to all objects.
ACL Events requested by a security alarm in the ACL of an

object.
Authorization Modi�cation of system authorization information.
Breakin Intrusion attempts.
Connection Logical link connections or terminations or an interpro-

cess (IPC) call.
Create Creation of a protected object.
Deaccess Deaccess from a protected object.
Delete Deletion of a protected object.
Identi�er Use of identi�ers as privileges.
Install Modi�cations made to the known �le list through the

Install utility.
Logfailure Unsuccessful login attempts.
Login Successful login attempts.
Logout Logouts.
Mount Volume mounts and dismounts.
NCP Modi�cation of the network con�guration database using

the network control program.
Privilege Successful or unsuccessful use of privilege.
Process Use of one or more of the process control system services.
SYSGEN Modi�cation of a system parameter with the System

Generation utility (SYSGEN).
Time Modi�cation of system time.

79

The OpenVMS auditing system provides approximately one-hundred di�erent types

of data packets. For a complete list of the supported types of data packets, see

[Dig96b]. The number and type of data packets found in a record depends on the

type of event, but commonly recorded information in a OpenVMS record includes:

� Event Time { Date and time of the event.

� PID { Process identi�er of the process who caused the event.

� Process Name { Process' name that caused the event.

� Username { Name of the user.

� Terminal Name { Name of the local terminal.

� Image name { Name of the image being executed when the event took place.

� Object Name { Object's name.

� Object Type { Object's type code.

� Status { Status of the action.

Other types of information that may be found in data packets include the com-

mand line entered by a user, user privileges, parent process attributes, and remote

node information for network events. For examples of types of data appearing in

di�erent events, see [Dig96a].

4.3 Solaris

The Solaris operating system from Sun Microsystems includes a security exten-

sion called the Basic Security Module [Sun95], or BSM. The Basic Security Module

provides enhanced security auditing that is designed to achieve the C2 level in the

Trusted Computer System Evaluation Criteria [Nat85]. The BSM extension supports

monitoring of system users through recording of security-relevant actions.

80

BSM auditable events fall into two categories: kernel events and user-level events.

Kernel events are generated by system calls, while user-level events are generated by

application software. Fourteen utility applications of the Solaris operating system

perform user-level auditing. The fourteen applications are given in table 4.4. Most

events are attributable to an individual user, but a few events are nonattributable

because they occur at the kernel-interrupt level or before a user is identi�ed. Over 250

di�erent types of events are generated by various Solaris system calls and trusted ap-

plications. Each event belongs to one or more audit classes. The eighteen prede�ned

audit classes are shown in table 4.5.

Table 4.4 : BSM Applications that Perform User-Level Auditing

allocate at crontab halt
inetd in.ftpd login mountd
passwd reboot rpc.rexd in.rexecd
in.rshd su

Header Token

Argument Token

Subject Token

Return Token

Header Token

Subject Token

Text Token

Exit Token

Typical Audit Record
for Kernel Event

Typical Audit Record
for User-Level Event

Figure 4.2 : Typical BSM Audit Records

A BSM audit record is composed of a sequence of audit tokens, with each token

containing speci�c information about the event. There are twenty-�ve di�erent audit

81

Table 4.5 : BSM Audit Classes

Class Description

no class Null class for turning o� event preselection.
�le read Read of data, open for reading, etc.
�le write Write of data, open for writing, etc.
�le attr acc Access of object attributes
�le attr mod Change of object attributes
�le creation Creation of object
�le deletion Deletion of object.
�le close close system call events.
process Process operation.
network Network events.
ipc System V IPC operations.
non attrib Nonattributable events.
administrative Administrative actions.
login logout Login and logout events.
application Application-de�ned events.
ioctl ioctl system call events.

82

tokens, but most audit records only contain a few tokens. Figure 4.2 show typical

audit records for kernel events and user-level events. Every audit record has a header

token, and all attributable records have a subject token. Kernel events typically

have argument and return tokens containing relevant argument information and the

return status of the system call, while the user-level events typically have text and

exit tokens containing application-speci�c data and the exit status of the program.

The information given by a header token include:

� Event ID { Identi�er of the type of audit event.

� ID Modi�er { Modi�er with descriptive information about the event type.

� Data and Time { Date and time the record was created.

The information given by a subject token include:

� Audit ID { Audit user identi�er that is assigned at login and inherited by all

child processes. An audit ID does not change, even when the user ID changes.

� User ID { E�ective user ID.

� Group ID { E�ective group ID.

� Real User ID { Real user ID.

� Real Group ID { Real group ID.

� Process ID { Process ID.

� Session ID { Session identi�er assigned at login time.

� Terminal ID { Identi�er composed of the device ID and machine ID.

BSM audit records try to be self-contained in that a record contains all relevant

information about an event, and does not require other audit records for interpreta-

tion. Full path names are recorded when identifying an object, and audit IDs provide

accountability back to login.

83

4.4 UNICOS

Auditing on a UNICOS operating system [Cra95, Cra96], Cray's proprietary ver-

sion of the UNIX operating system, consists of collecting information on security-

relevant events and recording the information in a security log. The security audit

trail documents system activity and aids in reporting on individually accountability,

security policy violations, system integrity, and sensitive information handling. Many

design speci�cations for UNICOS security features, including security auditing, are

derived from the Trusted Computer System Evaluation Criteria [Nat85].

Security auditing supports individual accountability by allowing events related

to security to be traced to the responsible individuals. Audit records for security-

relevant events are generated by the kernel and by trusted user-level applications.

The di�erent security log record types are summarized in table 4.6. Each audit

record involves an authenticated subject and has a header followed by event-speci�c

information. The information included in the header are:

� Date and Time { Date and time at which the record was entered.

� Type { Type of record.

� JID { Job identi�er.

� PID { Process identi�er.

� Real User ID { Real user identi�er.

� Real Group ID { Real group identi�er.

� E�ective User ID { E�ective user identi�er.

� E�ective Group ID { E�ective group identi�er.

� Security Label { Security label of the subject.

� Object Label { Security label of the object.

84

Table 4.6 : UNICOS Security Log Record Types

Record Description

SLG GO System logging start record.
SLG STOP System logging stop record.
SLG CCHG System con�guration change record.
SLG TCHG System time change record.
SLG DISC 7 Discretionary access violation record.
SLG MAND 7 Mandatory access record.
SLG OPER Operational access record.
SLG LOGN Login validation record
SLG TAPE Tape activity record.
SLG EOJ End-of-job record.
SLG CHDIR Change directory record.
SLG SECSYS Security system call record.
SLG DAC CHNG setuid system call record.
SLG SETUID su attempt record.
SLG SU File transfer logging record.
SLG FXFR Network security violations record.
SLG IPNET Cray NFS request record.
SLG NFS Network con�guration change record.
SLG NETCF Audit criteria selection change record.
SLG AUDIT NQS con�guration change record
SLG NQSCF NQS activity record.
SLG NQS Trusted process activity record.
SLG TRUST Use of privilege record.
SLG PRIV Cray/REELlibrarian activity record.
SLG CRL Discretionary access change record.

85

� Login ID { User ID assigned at login; does not change after login.

4.5 Windows NT

The Windows NT operating system [Mic95b, Mic95a] from Microsoft Corporation

includes mechanisms for recording signi�cant events on behalf of the operating system

and other applications. These mechanisms allow the system administrator to monitor

events related to system security, to identify security breaches, and to determine the

extent and location of any damage. Windows NT is designed for C2-level security of

the Trusted Computer System Evaluation Criteria [Nat85].

Events recorded by Windows NT are related to the operating system itself or to in-

dividual applications. Windows NT provides mechanisms that allow each application

to de�ne and log its own auditable events. Windows NT groups related events into

categories. The categories for the security log are given in table 4.7. Each auditing

application can also de�ne its own categories.

Table 4.7 : Windows NT Security Event Categories

Category Description

Account
Management

Events describing high-level changes to user accounts.

Detailed Tracking Events providing detailed subject-tracking
information.

Logon/Logo� Events describing a logon or logo� attempt.
Object Access Events describing access to protected objects.
Policy Changes Events describing high-level changes to the security

policy database.
Privilege Use Events describing attempts to use privileges.
System Event Events indicating something a�ecting the security of

the system.

Audit events are identi�ed by the source name of the software module or applica-

tion which generated the event and by an event ID unique relative to the given source.

86

Many audit events also include a handle ID, which allows the event to be associated

with future events. For example, a �le open event includes an assigned handle ID

which is also included in future events that involve the opened �le. Information

commonly recorded in an event record include:

� Time Generated { Time at which the record was submitted.

� Time Written { Time at which the record was written to the log�le.

� Event ID { Event identi�er.

� Event Type { Type of event logging. Possible types are Error, Warning, Infor-

mation, Success Audit, and Failure Audit.

� Event Category { Category of the event.

� Source Name { Name of the source that generated the record. For example,

name of application, service, driver, or subsystem.

� Computer Name { Name of the computer that generated the record.

� User SID { Security ID of the primary user.

� Impersonation SID { Security ID of the client if impersonated.

� Process ID { Identi�er of the process.

4.6 Results of the Survey

We found that each of the surveyed operating systems provided an auditing sys-

tem to record security-relevant activity on the monitored computing system. The

auditing mechanisms were designed to aid in detection of security violations, and

many of the auditing systems' design speci�cations were derived from the require-

ments of the C2 class of the Trusted Computer System Evaluation Criteria [Nat85].

Each of the auditing systems provides a mechanism for classifying events to simplify

administering of the auditing system. The information recorded by each system for

87

a security relevant event includes the identity of the user involved in the action along

with the identities of any protected system objects e�ected by the action. Typical

information recorded in an audit record includes the user and object identi�ers used

by the operating system to identify the user and protected objects, the user's privi-

lege levels, the objects' access permissions, and the identi�er of the process acting on

behalf of the user.

Two limitations encountered by misuse detection system developers are the lack

of application level auditing in many operating systems and the di�culty of audit

records that are not self-contained. In addition, we encountered the limitation of lack

of su�cient documentation on the auditing facility's capabilities. The next sections

discuss these limitations.

4.6.1 Application Level Audit Data

Application level audit data are not commonly available with conventional oper-

ating systems, but a number of misuse detection system developers [Lun90, Kum95]

advocate application level auditing. See section 3.6.5 for a discussion of the advan-

tages and disadvantages of each level of audit collection. All the operating systems

reviewed provided mechanisms for generation of application level audit data, but few

of the system's applications actually perform application level auditing. For example,

both the Solaris [Sun95] and the HP-UX [Hew95] operating systems include around

a dozen applications that perform high-level auditing, but many standard applica-

tions, such as editors, command interpreters, window managers, and mail tools, do

not include application level auditing.

In an unusual compromise, the developers of HP-UX decided to fully trust selected

applications to the extent that when the application is granted the ability to audit,

the operating system level auditing is disabled for the process. Even though this

results in a reduced amount of audit data, this compromise is risky as it is extremely

di�cult, if not generally impossible, to develop absolutely secure systems [Den87].

HP-UX is not the only system to make this compromise; the Compartmented Mode

88

Workstation project [Pic87], a prototype secure system reviewed in section 2.1.1, also

entrusts applications to perform their own auditing in special cases.

4.6.2 Self-Contained Audit Records

One trade-o� faced by auditing systems is whether to have self-contained audit

records that include redundant information but do not require other records for in-

terpretation, or to reduce audit volume by eliminating redundancy and distributing

an event's information across multiple records.

Solaris BSM strives to contain all relevant information about an event in the audit

event record. HP-UX, on the other hand, uses a compressed audit trail format to save

space that, in some cases, results in requiring multiple records to fully interpret an

event. For example, the only subject information stored in most HP-UX audit records

is the process ID. To gain further information about the subject of the event, the

PID Identi�cation Record for the subject must be examined. The PID Identi�cation

Record contains information characterizing the process, such as audit ID, user ID,

group ID, etc., and is only generated once per process.

Audit data is quite voluminous, but some misuse detection developers [Pri96b]

feel a trade-o� of space is acceptable when self-contained audit records are the result.

Self-contained audit records support random-access during analysis and allow misuse

detection systems to maintain less state during processing of an audit trail. An addi-

tional factor is that corruption of the audit trail does not require resynchronization of

state with self-contained audit records. Corruption of a compressed audit trail could

lead to loss of state information.

Another di�culty that arises when records are not self-contained is that the events

triggering the storage of the supplemental information may occur before auditing is

initiated. Ko [Ko96] noted that BSM only stores the name of the program executed

with the exec or fork events. It is very di�cult to determine the program executed for

a process if the program is executed before the start of the system audit collection.

89

To obtain the program each process is executing, Ko resorted to inspecting kernel

memory.

4.6.3 Operating System Documentation

One obstacle we encountered with every surveyed operating system was a lack of

documentation on the auditing facility's capabilities. We referred to the system ad-

ministration and reference manuals [Hew95, Hew96, Dig96a, Dig96b, Sun95, Cra95,

Cra96, Mic95b, Mic95a] for each operating system to obtain information for this sur-

vey. All the systems provided documentation on their auditing facilities in their man-

uals, but the documentation omitted relevant information for many of the systems.

In our opinion, Solaris provided the most complete documentation and Windows NT

provided the least complete documentation. Solaris provided documentation on the

content and layout of every possible audit record that may be generated by the sys-

tem, while Windows NT only provided sketchy information on the types of actions

that are audited and a few example audit records.

Even though we felt that Solaris provided the most extensive documentation, this

documentation was not completely satisfactory. A major omission in all the oper-

ating systems' documentation was information describing what conditions result in

the generation of each audit event. The Solaris BSM manual provided a description

of every type of event, but the documentation omitted listing the circumstances un-

der which the audit events would be generated. For example, the rlogin event is

documented as being associated with the /usr/bin/login program but upon testing

of the login program, we found the rlogin events are only generated when a user

remotely logs in to the local host. If a local user remotely logs in to a remote host,

then the remote login is not recorded by a rlogin event in the audit trail of the local

host.

One area for future work would be the investigation of the systems in more depth

to more fully access their capabilities. The published documentation for the operating

systems was found to be insu�cient for gaining a full understanding of the operating

90

systems' capabilities. Possible means for acquiring this omitted information could

include source code reviews of the systems, trial-and-error testing of running systems,

and interviewing the developers of the auditing facilities of the systems.

4.7 Summary

In this chapter, we examined the auditing systems of �ve conventional operat-

ing systems. Each auditing system provides the ability to monitor system activity

through the recording of security-relevant events. Each audit event record describes

the subject performing the action and any objects involved in the action. The audit-

ing systems were found to have di�erent emphases for the audit trail. Some systems,

such as HP-UX, strive for reduced audit volume by removing redundancy from the

audit trail, while other systems, such as Solaris, strive for self-contained audit records

at the expense of a greater audit data volume. All the auditing systems provide

mechanisms for application-level auditing, but we found that few applications actu-

ally take advantage of the provided mechanisms. In addition, we found the manual

documentation for the the auditing systems to omit relevant information about the

auditing systems' capabilities.

91

5. MISUSE DETECTION NEEDS AND AUDIT COLLECTION
CAPABILITIES

In this chapter, the audit data needs of existing host-based misuse detection sys-

tems are compared with the audit data collection capabilities of conventional op-

erating systems. In the following sections, we identify the audit data that must be

provided by operating systems to support the data usage requirements of the reviewed

misuse detection systems, we discuss when state information must be recorded in the

audit trail, and we reexamine the audit data collection capabilities of the reviewed

operating systems.

Most of the surveyed misuse detection systems support the BSM audit trail of the

Solaris operating system. Table 5.1 shows the operating system audit trails supported

by each misuse detection system. The systems mainly focus on detection of misuse

within UNIX systems, which may lead to unforeseen problems when other auditing

sources are analyzed.

Table 5.1 : Audit Trails Supported by Each Misuse Detection System

HP-UX OpenVMS Solaris UNICOS Windows NT Other
DIDS X
IDIOT X
NADIR/
UNICORN

X X

NIDES X X
STAT/
USTAT

X

92

In section 5.1, we present the event characterization information that must be

deducible from the audit trail to meet the audit data requirements of the reviewed

misuse detection systems. We discuss the deduction of system state information from

the audit trail in section 5.2. Finally, we reexamine the capabilities of the surveyed

operating systems in section 5.3 to illustrate omissions of relevant audit data by the

operating systems' audit collection facilities.

5.1 Characterization of an Event

The surveyed misuse detection systems agree on the concept that a host-based

event can be characterized by an action, subject, and object(s). The event records

the activity resulting from an action by a subject involving system objects. The

view of an event being composed of a subject, object, and action may be widespread

because this view is presented in Denning's paper introducing the Intrusion Detection

Model [Den87]. Denning's Intrusion Detection Model is widely referenced by misuse

detection system developers.

The surveyed operating systems also agree on the concept that a security-relevant

event can be characterized by an action, subject, and object(s). The action is normally

the request for or the result of a system service or high-level application activity, the

subject is the user and the process acting on behalf of the user, and the objects are

protected system resources. An audit record typically characterizes a subject by user

name and identi�ers, group membership identi�ers, process identi�ers, and terminal

identi�ers. The event is typically characterized by an action identi�er. The objects

are typically characterized by names, identi�ers, access permissions, and locations.

An open question that remains to be answered is what constitutes a security-

relevant action and when should audit events be generated for an action. Many

actions on a computer system are not atomic and have the potential to generate

multiple events. For example, a single write operation might generate multiple events

including a \request of a write operation" event, an \initiation of a write operation"

event, a number of \status of a write operation" events, and a \completion of a

93

write operation" event. Often though, only a single \write" event is recorded in the

audit trail. The types and timings of events that are recorded for an action a�ect

the types of information that may be deduced from the audit trail in regards to the

action. If only the initiations of operations are recorded, then the outcome of the

operations may not be deducible from the audit trail. If an event is only generated

at the completion of an operation, then suspicious operations can only be detected

after-the-fact rather than at their initiation.

In the next sections, we present the event characterization information that should

be deducible from an audit trail to meet the data requirements of the surveyed mis-

use detection systems. This set of event characterization information results from

the union of all the data �elds of the standard audit record representations of the

surveyed misuse detection systems. Tables 5.2, 5.3, 5.4, and 5.5 summarize which

misuse detection systems' standardized audit records possess which event characteri-

zation information. The subject information are discussed in section 5.1.1, the action

information are discussed in section 5.1.2, the object information are discussed in sec-

tion 5.1.3, and the other information, not pertaining directly to the subject, action,

or object, are discussed in section 5.1.4.

5.1.1 Subject Information

A subject consists of the user and the process acting on behalf of the user. The

user is often characterized by a number of user names and/or user identi�ers that are

acquired as the user uses the system. The computing system records the changes of

user identity in the audit trail. For example, most auditing systems are capable of

recording when a user acquires a di�erent user identity. Additionally, a number of

di�erent user identities are often recorded with each event. The user identities that

should be deducible for each event are:

� Audit User Identity { User identity acquired during login to the local host. This

user identity does not change during the current session on the local host, even

when the user changes his/her current identity.

94

Table 5.2 : Subject Attributes and Misuse Detection Systems

DIDES IDIOT NADIR / NIDES STAT /
UNICORN USTAT

Audit User Identity X X
Current User Identity X X X X X
Acting User Identity X X X X X

User ID X X X
Group IDs X X
Labels X
Security Levels X
Privilege X

Session ID X X
Classi�cation Level X
Local Host Identity X X
Local Host Security
Partition

X

Remote Host Identity X X
Remote Host Classi�ca-
tion Level

X

Remote Host Security
Partition

X

Program Name X
Program Locator X
Program Permissions X
Process ID X X X X X
Parent Process ID X
Charge Code X
Real Time X
User CPU Time X
System CPU Time X
Memory Usage X
I/O Activity X
TTY Number X
Program Type X X

95

Table 5.3 : Action Attributes and Misuse Detection Systems

DIDES IDIOT NADIR / NIDES STAT /
UNICORN USTAT

Action X X X X
Time X X X X
Status/Return Value X X X X
Error X X X X
Command/System Call X
Arguments X

Table 5.4 : Object Attributes and Misuse Detection Systems

DIDES IDIOT NADIR / NIDES STAT /
UNICORN USTAT

Name X X X X X
Locator X X X
Type X X X
Access Permissions X X
Security Label X
Security Partition X
Owner X X
Group Owner X
Size X
File System ID X

Table 5.5 : Other Attributes and Misuse Detection Systems

DIDES IDIOT NADIR / NIDES STAT /
UNICORN USTAT

Timestamp X
Audit Data Source Type X
Sequence Number X

96

� Current User Identity { Currently assumed user identity on the local host.

E.g., real user identity in UNIX.

� Acting User Identity { User identity that indicates the current privilege level.

E.g., e�ective user identity in UNIX or impersonation identity in Windows NT.

For each user identity, the attributes that are be deducible from the audit trail

are:

� User ID { Unique identi�er used to identify the user.

� Group IDs { Groups to which the user identity has membership.

� Labels { Security labels possessed by the user identity.

� Security Levels { Security levels accessible to the user identity.

� Privilege { Access privileges, or permissions, possessed by the user identity.

Some attributes, such as labels and security levels, are not applicable to all sys-

tems, but if an attribute is applicable, then its value at the time of the recorded action

should be deducible from the audit trail.

Many operating systems also provide a number of additional attributes about a

particular user, such as the location of the local host in a distributed system. The

network location and session attributes that should be deducible from the audit trail

are:

� Session ID { Identi�er of user's session on local host.

� Classi�cation Level { Classi�cation level of the user's session.

� Local Host Identity { Identity of the local host on which the action occurred.

� Local Host Security Partition { Security partition in which the local host resides.

� Remote Host Identity { Identify of the remote host involved in a distributed or

network related operation.

97

� Remote Host Classi�cation Level { Classi�cation level of the remote host in-

volved in a distributed or network related operation.

� Remote Host Security Partition { Security partition in which the remote host

resides.

In addition to user identity information, a subject is characterized by a number

of process attributes. The process acts on behalf of the user to perform activity on

the computing system. Attributes that should be deducible from the audit trail that

pertain to processes are:

� Program Name { Name of program �le executed by the process.

� Program Locator { Physical locator for the program; e.g., inode number in a

UNIX �le system.

� Program Permissions { Access permission for the program.

� Process ID { Identi�er used by the operating system to identify the process.

� Parent Process ID { Identi�er of the parent process.

� Charge Code { Accounting code for charging resource utilization for the process.

� Real Time { Real (clock) time of process execution.

� User CPU Time { CPU time spent in user space by the process. E.g., time

spent by a UNIX process executing non-kernel program code.

� System CPU Time { CPU time spent in system space by the process. E.g.,

time spent by a UNIX process executing kernel program code.

� Memory Usage { Average memory usage of the process. Often the average

memory usage is recorded when a process exits, but intermediate values may

also be recorded.

98

� I/O Activity { A measure of I/O activity for the process. E.g., number of

characters or blocks transferred transferred during the lifetime of the process.

Often the average I/O activity is recorded when a process exits, but intermediate

values may also be recorded.

� TTY Number { TTY number associated with a UNIX process.

� Program Type { The type of program executed. E.g., shell script, binary �le,

etc.

Note that both the IDIOT and USTAT misuse detection systems deduce type

information by directly accessing the program �le rather than from the system

audit trail.

Some attributes, such as charge code, are not applicable to all systems, but if an

attribute is applicable, then its value at the time of the recorded action should be

deducible from the audit trail.

5.1.2 Action Information

An event is also characterized by the action performed by the subject. The action

may be low-level, such as a system-call, or high-level, such as an application command.

The attributes that should be deducible from the audit trail for the action of an event

are:

� Action { Type of action recorded in the record.

� Time { Time at which the action occurred.

� Status/Return Value { Status or return value indicating the outcome of an

action. E.g., the value returned by a system call.

� Error { Errors generated or resulting from the action. E.g., the error number

generated by a system call.

99

� Command/System Call { Name of the command or system call that generated

the audit record.

� Arguments { Command line arguments for commands or function arguments

for function calls.

The time at which an event is generated for an action will a�ect the values of the

action's attributes. Events that are generated at the request or initiation of an action

will not have the completion or error status values of the action.

5.1.3 Object Information

The third component of an event is the object of the action. The object may

be physical, such as a device, or logical, such as a process. The information that

should be deducible from the audit trail will vary based on the type of object. The

information that should be deducible from the audit trail for each process object is

the same as the information stored for each process subject. The information that

should be deducible from the audit trail for each physical object a�ected by the event,

such as a �le or device, are:

� Name { Name used to identify the object in the event. If the object is a �le,

then this �eld possesses its full pathname.

� Locator { Physical locator for the object; e.g., inode number or device number

if the object resides in a UNIX �le system.

� Type { Type of object. E.g., regular, temporary, shell-script, etc. This informa-

tion is often used to help determine applicable domains for the object.

Note that both the IDIOT and USTAT misuse detection systems deduce the

type information for a �le by directly accessing the �le rather than from the

system audit trail.

� Access Permissions { Type of access permitted to object.

100

� Security Label { Security label of the object.

� Security Partition { Security partition in which the object resides.

� Owner { Identity of the owner of the object.

� Group Owner { Group owner identity.

� Size { Size of object. E.g., �le size in bytes.

� File System ID { If the object is a �le, then this is the identi�er of the �le

system in which the �le resides.

In cases where the action changes an attribute of the object, such as its name or

location, then the old and new attribute values should be deducible from the audit

trail. Some attributes, such as security label, are not applicable to all systems, but

if an attribute is applicable, then it's value at the time of the recorded action should

be deducible from the audit trail.

5.1.4 Additional Information

Some additional information, that does not relate directly to the subject, action,

or object of an event, should also be deducible from the audit trail. These additional

information are:

� Timestamp { Time at which the audit record was generated.

� Audit Data Source Type { Type of the native audit system. E.g., Sun BSM or

HP-UX.

� Sequence Number { The sequence number of the audit record.

5.2 Deduction of System State Information

As we noted in section 3.6, the misuse detection systems analyze the audit data

recording the activity on the monitored computer system to detect changes in the

101

system state that may be indicative of computer system misuse. The state of the

subject, action, and objects at the time of the event occurrence must be deducible

from the audit trail, but it may not be necessary for the state of all the attributes of the

subject, action and objects to be recorded with each event. Many attributes' states

are set before the event occurs and may have been previously recorded in the audit

trail. The states of all relevant attributes to an event may not need to be recorded

in every event audit record; only the identi�ers necessary to identify the subject,

objects, and action of the event need to be recorded along with any attributes that

were e�ected by the action. If it is not known whether a particular piece of relevant

state information was previously recorded, then the event record must contain that

piece of information characterizing the current state.

As we noted in section 4.6.2, operating systems have placed di�ering emphasis

on the importance of self-contained audit records. Self-contained audit records allow

misuse detection systems to maintain less state during processing of an audit trail,

but audit records with redundant state information lead to more voluminous audit

trails. Audit trails with event information distributed across multiple audit records

have reduced audit volume, but corruption of the audit trail can lead to resynchro-

nization problems and loss of state information. Though audit records may not be

self-contained, the audit trail should be fully self-contained. The data included in an

audit trail should require no additional information from the monitored system for

interpretation. Audit trails that are not fully self-contained can lead to di�culties in

o�-site processing. Also, the possibility exists that the state information upon which

the audit data are dependent may change before that audit trail is processed.

The times at which attributes are recorded depends on a number of factors. The

value of an attribute at the time the event associated with the attribute occurs must

be deducible from the audit trail. If every change of state of an attribute is recorded

in the audit trail, then the value of the attribute may not need to be recorded,

redundantly, in the audit trail with the event record. Often redundant recording of

state can be bene�cial. The redundancy may be used to uncover tampering of the

102

audit trail if the attribute states do not correspond. Redundancy can be vital if there

is the possibility of loss of audit data. Another reason for redundancy may be the

desire to not record the change to every system attribute, but rather to only record

attribute states relevant when an event of interest occurs.

Tables 5.6, 5.7, 5.8, and 5.9 give indications of when the state of system attributes

are set. If the action corresponds to the time when the state of the system attribute

is set, then the attribute value must be recorded with the event. If the action does

not correspond to the time when the state of the system attribute is set, then the

system attribute may not need to be recorded with the event to be deducible from

the audit trail.

5.3 Examination of Operating System Capabilities

In this section, we examine the audit collection capabilities of the surveyed oper-

ating systems and some omissions of relevant audit data by these systems. A misuse

detection system should be able to deduce the needed subject, action, object, and

other attribute state information discussed in the �rst sections of this chapter from

the audit trail without any additional information from the monitored system. Un-

fortunately, none of the reviewed operating systems fully meet the audit data needs

of the misuse detection systems.

Each of the surveyed operating systems' audit trails lacks some of the required

state information. One area of omission for many of the operating systems in user-

level information. Some of the audit trails do not support recording of user-level

commands. For example, the Solaris operating does not record the commands exe-

cuted by the system users. Only system calls and a handful of system utilities that are

invoked by the user's commands are recorded in the audit trail. Even though some

other systems, such as OpenVMS, provide mechanisms for recording user commands,

many system applications do not take advantage of these mechanisms.

Another area of omission for many of the operating system audit trails is resource

utilization information for processes. User CPU time, system CPU time, average

103

Table 5.6 : Subject Attributes and When Their States are Set

Attribute When State is Set

Audit User Identity Login to local host
Current User Identity Last change of user name/ID
Acting User Identity Last change of acting user name/ID

User ID Acquisition of user identity
Group IDs Last change of group membership for user identity
Labels Last change of security labels for user identity
Security Levels Last change of security levels for user identity
Privilege Last change of privileges for user identity

Session ID Login to local host
Classi�cation Level Last change of classi�cation level for session
Local Host Identity Login to local host
Local Host Security
Partition

Last change of security partition for the local host

Remote Host Identity Initiation of distributed action
Remote Host Classi�cation
Level

Last change of classi�cation level for the remote
host

Remote Host Security
Partition

Last change of the security partition for the re-
mote host

Program Name Request or initiation of process
Program Locator Last change of the the name/locator binding
Program Permissions Last change of permission for the program
Process ID Initiation of process
Parent Process ID Initiation of process
Charge Code Request or initiation of process
Real Time Completion of process or during execution if in-

termediate CPU usage is recorded
User CPU Time Completion of process or during execution if in-

termediate CPU usage is recorded
System CPU Time Completion of process or during execution if in-

termediate CPU usage is recorded
Memory Usage Completion of process or during execution if in-

termediate memory usage is recorded
I/O Activity Completion of process or during execution if in-

termediate i/o usage is recorded
TTY Number Initiation of the process
Program Type Initiation of process

104

Table 5.7 : Action Attributes and When Their States are Set

Attribute When State is Set

Action Request or initiation of the action
Time Occurrence of the action
Status/Return Value Completion of the action or during action if inter-

mediate status is recorded
Error Completion of the action
Command/System
Call

Request of the action

Arguments Request of the action

Table 5.8 : Object Attributes and When Their States are Set

Attribute When State is Set

Name Request of access to the object
Locator Access to the object
Type Last change of the object's type
Access Permissions Last change of the object's access permissions
Security Label Last change of the object's security label
Security Partition Last change of the object's security partition
Owner Last change of the object's owner
Group Owner Last change of the object's group owner
Size Last modi�cation of the object's content
File System ID Last move of the �le's location across �le systems

Table 5.9 : Other Attributes and When Their States are Set

Attribute When State is Set

Timestamp Generation of the audit record
Audit Data Source
Type

Initiation of the auditing process

Sequence Number Generation of the audit record

105

memory usage, and I/O activity measures are not deducible from the audit trails.

Many of the audit trails also lack the name/identi�er binding information for system

resources, and thus require access to the system for interpretation. The audit trails

generated by Solaris, HP-UX, and UNICOS only contain the numeric identi�er used

by the operating system to identify the user. To obtain the user name associated

with a particular identi�er, the operating system must be queried for the current

id-to-name mapping to obtain the user name.

Another common de�ciency is the lack of process state information on the type of

program executed. None of the operating systems collect audit information indicating

if a program or �le is a shell-script. USTAT and IDIOT both test to see if a program

is a shell-script by directly querying the system because this state information is not

provided by the audit trail. Yet another problem with object state information is

ambiguity in identi�cation. This problem was noted by the IDIOT misuse detection

system developers [CDE+96] in the Solaris BSM audit trail. They noted that the

name used to identify an object may be an alias, for example in the case of a link to

a �le, and so may di�er from the actual name used by the operating system to locate

the object. Problems arise when only one of the names is deducible from the audit

trail.

From our survey, we determined that none of the systems fully meet the audit data

needs of the misuse detection systems, and we illustrated a number of omissions of

relevant audit data. We did not determine which event characterization information

was deducible from each operating system's audit trail. As we discussed in section

4.6.3, we found the operating system documentation for the auditing systems to be

insu�cient for determination of the full extent of the systems' capabilities. Further

investigation of each operating system may be useful for determining the full extent

of each system's capabilities and the full extent to which each system supports the

misuse detection systems event characterization needs.

106

5.4 Summary

In this chapter, we compared the audit data needs of existing misuse detection

systems with the auditing capabilities of conventional operating systems. We iden-

ti�ed the data that must be provided by an operating system to support the needs

of the reviewed misuse detection systems, and we discussed the deduction of state

information from the audit trail. We noted that although audit records may not need

to be self-contained, audit trails must be self-contained. We examined the extent

to which the surveyed operating systems are meeting the audit data needs of the

surveyed misuse detection systems, and we noted that none of the operating systems

fully meet the data needs of the misuse detection systems.

107

6. CONCLUSION AND FUTURE DIRECTIONS

The inadequacy of the audit data supplied by conventional operating systems

is a major challenge in misuse detection. The audit data supplied by conventional

operating systems lack content useful for misuse detection, and misuse detection is

further impeded by the lack of a widely accepted audit trail standard that is adequate

for misuse detection. This thesis provided insight into the questions of what data is

needed to support a number of existing host-based misuse detection systems and

how well a number of conventional operating systems are meeting these needs. We

identi�ed the audit data usage requirements for host-based analysis by a number of

misuse detection systems, and we identi�ed the audit data collection capabilities of

a number of conventional operating systems. Through this study, we identi�ed a

number of speci�c audit data inadequacies that misuse detection system developers

have encountered with existing operating systems.

We found that the misuse detection systems and operating systems agree that an

event can be characterized by a subject, action and objects, but we also identi�ed a

number of speci�c insu�ciencies in the audit data collection capabilities of conven-

tional operating systems. We found that current auditing systems are inadequate in

providing information for tracking users in a distributed system, in providing object

domain and content information, and in providing information on network service

activity. We found that though mechanisms for generation of application level audit

data are provided by many operating systems, the application level auditing needs of

the misuse detection systems are not being met because system applications are not

taking advantage of the audit data generation mechanisms. In addition, we found the

manuals for the operating systems to be insu�cient in their coverage of the auditing

facilities.

108

Based on what we have observed, misuse detection researchers agree that operating

system audit trails are not meeting the audit data needs of misuse detection systems,

and there is a lack of understanding as to what these needs are. We found that

all the misuse detection system researchers we interviewed desired more information

per audit record and each felt that relevant information was missing from the audit

trail. We found that many developers advocated self-contained audit records which

alleviate the need for a misuse detection system to maintain system state information.

With the disparity in audit trail formats and contents across platforms, we found that

misuse detection system developers have encountered great di�culties with migration

and correlation of audit data across di�erent systems.

6.1 Future Directions

Much work is left to be done in order to de�ne the requirements for audit data for

misuse detection. A comprehensive, widely-accepted standard that supports misuse

detection needs is necessary before many problems facing today's computer security

specialists can be solved. A recent study of the state of the art in misuse detection

[Law96] found that inconsistency in audit data frommultiple sources is a fundamental

challenge to misuse detection along with a lack of understanding of what events are

relevant to misuse detection.

Major problems that face misuse detection developers include understanding the

audit data needs of misuse detection and de�ning the adequacy requirements for audit

trails. This work illustrated that current audit trails omit information that is relevant

to detecting misuse and exposed some of the omissions, but the signi�cant problem

of determining the audit data needs of misuse detection remains to be solved. While

this work determined what data is necessary to meet the current requirements of the

reviewed misuse detection systems, it does not fully lay out the audit data needs

in general. The reviewed auditing systems were designed with the constraint of the

limited audit data supplied by conventional operating systems. A misuse detection

system designed without this constraint will have additional audit data requirements.

LIST OF REFERENCES

109

LIST OF REFERENCES

[AFTV94] Debra Anderson, Thane Frivold, Ann Tamaru, and Alfonso Valdes. Next
Generation Intrusion Detection Expert System (NIDES) Software Users
Manual, Beta-Upgrade Release. SRI International, Menlo Park, Califor-
nia, December 1994.

[AFV95] Debra Anderson, Thane Frivold, and Alfonso Valdes. Next-generation
Intrusion Detection Expert System (NIDES), A Summary. Technical
Report SRI-CSL-95-07, SRI International, Menlo Park, California, May
1995.

[And80] James P. Anderson. Computer Security Threat Monitoring and Surveil-
lance. Technical report, James P. Anderson Co., Fort Washington, Penn-
sylvania, April 1980.

[And94] Kent E. Anderson. International Intrusions: Motives and Patterns. In
Proceedings of the 1994 Bellcore/Bell South Security Symposium, May
1994.

[Bar91] Tony Baroletti. Security Pro�le Inspector for the UNIX Operating System
(SPI/UNIX). Lawrence Livermore National Laboratory, December 1991.
UCRL-MA-103440, Rev. 2.

[BEF+91] D. Banning, G. Ellingwood, C. Franklin, C. Muckenhirn, and D. Price.
Auditing of Distributed Systems. In Proceedings of the 14th National
Computer Security Conference, pages 59{68, October 1991.

[Bis89] Matt Bishop. AModel of SecurityMonitoring. In Proceedings of the Fifth
Annual Computer Security Applications Conference, December 1989.

[Bis95] Matt Bishop. A Standard Audit Trail Format. In Proceedings of the
18th National Information Systems Security Conference, pages 136{145,
October 1995.

[Bon81] David Bonyun. The Role of a Well De�ned Auditing Process in the
Enforcement of Privacy Policy and Data Security. In Proceedings of the
IEEE Symposium on Security and Privacy, pages 19{25, April 1981.

110

[BS88] Lubomir Bic and Alan C. Shaw. The Logical Design of Operating Sys-
tems. Prentice Hall, second edition, 1988.

[BSD+91] James Brentano, Steven R. Snapp, Gihan V. Dias, Terrance L. Goan,
L. Todd Heberlein, Che-Lin Ho, Karl N. Levitt, Biswanath Mukherjee,
and Stephen E. Smaha. An Architecture for a Distributed Intrusion De-
tection System. In Proceedings of the 14th DOE Computer Security Group
Conference, pages 17.25{17.46, May 1991.

[CDE+96] Mark Crosbie, Bryn Dole, Todd Ellis, Ivan Krsul, and Eugene Spa�ord.
IDIOT { Users Guide. Technical Report CSD-TR-96-050, Department of
Computer Sciences, Purdue University, September 1996.

[CH96] James Cannady and Jay Harrell. A Comparative Analysis of Current In-
trusion Detection Technologies. In Proceedings of the Fourth Technology
for Information Security Conference, May 1996.

[CJN+95] Gary G. Christoph, Kathleen A. Jackson, Michael C. Neuman, Christine
L. B. Siciliano, Dennis D. Simmonds, Cathy A. Stallings, and Joseph L.
Thompson. UNICORN: Misuse Detection for UNICOS. In Proceedings
of the 1995 ACM/IEEE Supercomputing Conference, December 1995.

[Cra95] Cray Research, Inc. UNICOS Multilevel Security (MLS) Feature User's
Guide, August 1995. SG-2111 9.0.

[Cra96] Cray Research, Inc. General UNICOS System Administration, December
1996. SG-2301 9.2.

[CS95] Mark Crosbie and Eugene H. Spa�ord. Defending a Computer System us-
ing Autonomous Agents. In Proceedings of the 18th National Information
Systems Security Conference, pages 549{558, October 1995.

[Den82] Dorothy E. Denning. Cryptography and Data Security. Addison-Wesley,
1982.

[Den87] Dorothy E. Denning. An Intrusion-Detection Model. IEEE Transactions
on Software Engineering, 13(2):222{232, February 1987.

[Dig96a] Digital Equipment Corporation, Maynard, Massachusetts. OpenVMS
Guide to System Security, November 1996. OpenVMS VAX Version 7.1.

[Dig96b] Digital Equipment Corporation, Maynard, Massachusetts. OpenVMS
System Management Utilities Reference Manual, November 1996. Open-
VMS VAX Version 7.1.

[DR90] Cheri Dowell and Paul Ramstedt. The ComputerWatch Data Reduction
Tool. In Proceedings of the 13th National Computer Security Conference,
pages 99{108, October 1990.

111

[FS90] Daniel Farmer and Eugene H. Spa�ord. The COPS Security Checker
System. In Proceedings of the Summer 1990 USENIX Conference, pages
163{170, June 1990.

[GCBD95] Virgil D. Gligor, Janet A. Cugini, John M. Boone, and Robert W. Do-
bry. Security Criteria for Distributed Systems: Functional Requirements.
Institute for Defense Analyses, September 1995. IDA P-3159.

[GJM91] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of
Software Engineering. Prentice Hall, 1991.

[GS96] Simson Gar�nkel and Gene Spa�ord. Practical UNIX and Internet Secu-
rity. O'Reilly & Associates, Inc., second edition, 1996.

[GT96] Bob Gleichauf and Dan Teal. NetRanger High-Level Overview. Wheel-
Group Corporation, 1996. Version 1.1.

[Gur84] David B. Guralnik, editor. Webster's New World Dictionary of the Amer-
ican Language. Simon and Schuster, second college edition, 1984.

[HA93] Stephen E. Hansen and Todd Atkins. Automated System Monitoring
and Noti�cation With Swatch. In Proceedings of the USENIX Systems
Administration (LISA VII) Conference, pages 145{155, November 1993.

[HB95] Lawrence R. Halme and R. Kenneth Bauer. AINT Misbehaving { A Tax-
onomy of Anti-Intrusion Techniques. In Proceedings of the 18th National
Information Systems Security Conference, pages 163{172, October 1995.

[HCMM92] Naji Habra, Baudouin Le Charlier, Abdelaziz Mounji, and Isabelle Math-
ieu. ASAX: Software Architecture and Rule-Based Language for Uni-
versal Audit Trail Analysis. In Proceedings of European Symposium on
Research in Computer Security, pages 435{450, November 1992.

[HCMM94] Naji Habra, Baudouin Le Charlier, Abdelaziz Mounji, and Isabelle Math-
ieu. Preliminary report on Advanced Security Audit Trail Analysis on
uniX. Technical report, Institut d'Informatique, Facult�es Universitaires
Notre-Dame de la Paix, Namur, Belgium, September 1994.

[HDL+90] L. Todd Heberlein, Gihan V. Dias, Karl N. Levitt, Biswanath Mukherjee,
Je� Wood, and David Wolber. A Network Security Monitor. In Proceed-
ings of the 1990 IEEE Symposium on Research in Security and Privacy,
pages 296{303, May 1990.

[Hew95] Hewlett-Packard Company, Palo Alto, California. HP-UX System Ad-
ministration Tasks, second edition, June 1995. B2355-90079.

112

[Hew96] Hewlett-Packard Company, Palo Alto, California. HP-UX Reference
Manual { Volume 4: Sections 4, 5, and 7, third edition, July 1996. B2355-
90120.

[HH86] Lawrence R. Halme and John Van Horne. Automated Analysis of Com-
puter SystemAudit Trails for Security Purposes. In Proceedings of the 9th
National Computer Security Conference, pages 71{74, September 1986.

[HJS+93] Judith Hochberg, Kathleen Jackson, Cathy Stallings, J. F. McClary,
David DuBois, and Josephine Ford. NADIR: An Automated System
for Detecting Network Intrusion and Misuse. Computers & Security,
12(3):235{248, May 1993.

[HK88] Lawrence R. Halme and Brial L. Kahn. Building a Security Monitor
with Adaptive User Work Pro�les. In Proceedings of the 11th National
Computer Security Conference, pages 274{283, October 1988.

[HLM+91] Richard Heady, George Luger, Arthur Maccabe, Mark Servilla, and John
Sturtevant. A Prototype Implementation of a Network Level Intrusion
Detection System. Technical Report CS91-11, Department of Computer
Science, University of New Mexico, April 1991.

[HLMS90] Richard Heady, George Luger, Arthur Maccabe, and Mark Servilla. The
Architecture of a Network Level Intrusion Detection System. Technical
Report CS90-20, Department of Computer Science, University of New
Mexico, August 1990.

[How97] John D. Howard. An Analysis of Security Incidents on the Internet,
1989{1995. PhD thesis, Department of Engineering and Public Policy,
Carnegie Mellon University, April 1997.

[HWL95] James Hoagland, Christopher Wee, and Karl Levitt. Audit Log Anal-
ysis Using the Visual Audit Browser Toolkit. Technical Report CSE-
95-11, Department of Computer Science, University of California, Davis,
September 1995.

[III93] Walter Kiechel III. How We Will Work in the Year 2000. Fortune, May,
17 1993.

[IKP95] Koral Ilgun, Richard A. Kemmerer, and Phillip A. Porras. State Transi-
tion Analysis: A Rule-Based Intrusion Detection Approach. IEEE Trans-
actions on Software Engineering, 21(3):181{199, March 1995.

[Ilg92] Koral Ilgun. USTAT, A Real-time Intrusion Detection System for UNIX.
Master's thesis, Department of Computer Science, University of Califor-
nia, Santa Barbara, November 1992.

113

[Ilg93] Koral Ilgun. USTAT: A Real-time Intrusion Detection System for UNIX.
In Proceedings of the IEEE Symposium on Research in Security and Pri-
vacy, pages 16{28, May 1993.

[ISV95] David Icove, Karl Seger, and William VonStorch. Computer Crime, A
Crime�ghter's Handbook. O'Reilly & Associates, Inc., 1995.

[JDS91] Kathleen A. Jackson, David H. DuBois, and Cathy A. Stallings. An
Expert System Application for Network Intrusion Detection. In Proceed-
ings of the 14th National Computer Security Conference, pages 215{225,
October 1991.

[JV91] Harold S. Javitz and Alfonso Valdes. The SRI IDES Statistical Anomaly
Detector. In Proceedings of the IEEE Symposium on Research in Security
and Privacy, pages 316{326, 1991.

[JV94] Harold S. Javitz and Alfonso Valdes. The NIDES Statistical Component
Description and Justi�cation. Technical report, SRI International, Menlo
Park, California, March 1994.

[Ko96] Calvin Cheuk Wang Ko. Execution Monitoring of Security-Critical Pro-
grams in a Distributed System: A Speci�cation-Based Approach. PhD
thesis, Department of Computer Science, University of California, Davis,
1996.

[KS94] Sandeep Kumar and Eugene H. Spa�ord. A Pattern Matching Model for
Misuse Intrusion Detection. In Proceedings of the 17th National Com-
puter Security Conference, pages 11{21, October 1994.

[KS95] Sandeep Kumar and Eugene H. Spa�ord. A Software Architecture to
support Misuse Intrusion Detection. Technical Report CSD-TR-95-009,
Department of Computer Sciences, Purdue University, March 1995.

[Kuh86] Je�rey D. Kuhn. Research Toward Intrusion Detection through Auto-
mated Abstraction of Audit Data. In Proceedings of the 9th National
Computer Security Conference, pages 204{208, September 1986.

[Kum95] Sandeep Kumar. Classi�cation and Detection of Computer Intrusions.
PhD thesis, Department of Computer Sciences, Purdue University, West
Lafayette, Indiana, August 1995.

[Law96] Lawrence Livermore National Laboratory and Sandia National Labora-
tories. National Info-Sec Technical Baseline, Intrusion Detection and
Response, December 1996. Draft.

[LJ88] Teresa F. Lunt and R. Jagannathan. A Prototype Real-Time Intrusion-
Detection Expert System. In Proceedings of the IEEE Symposium on
Security and Privacy, pages 59{66, April 1988.

114

[LTG+90] Teresa F. Lunt, Ann Tamaru, Fred Gilham, R. Jagannathan, Peter G.
Neumann, and Caveh Jalali. IDES: A Progress Report. In Proceedings
of the 6th Annual Computer Security Applications Conference, December
1990.

[Lun88] Teresea F. Lunt. Automated Audit Trail Analysis and Intrusion Detec-
tion: A Survey. In Proceedings of the 11th National Computer Security
Conference, pages 65{73, October 1988.

[Lun89] Teresa F. Lunt. Real-Time Intrusion Detection. In COMPCOM Spring
'89, pages 348{353, February/March 1989.

[Lun90] Teresa F. Lunt. IDES: An Intelligent System for Detecting Intruders. In
Proceedings of the Symposium: Computer Security, Treat and Counter-
measures, Rome, Italy, November 1990.

[Lun93] Teresa F. Lunt. A survey of intrusion detection techniques. Computers
& Security, 12(4):405{418, June 1993.

[LV89] G. E. Liepins and H. S. Vaccaro. Anomaly Detection: Purpose and
Framework. In Proceedings of the 12th National Computer Security Con-
ference, pages 495{504, October 1989.

[Mar91] Victor H. Marshall. Intrusion Detection in Computers. Booz, Allen &
Hamilton Inc., January 1991. Summary of the Trusted Information Sys-
tems (TIS) Report on Intrusion Detection Systems.

[MC97] Abdelaziz Mounji and Baudouin Le Charlier. Continuous Assessment of
a Unix Con�guration: Integrating Intrusion Detection and Con�guration
Analysis. In Proceedings of the the ISOC 1997 Symposium On Network
and Distributed System Security, pages 27{35, February 1997.

[MCZH95] Abdelaziz Mounji, Baudouin Le Charlier, Denis Zampunieris, and Naji
Habra. Distributed Audit Trail Analysis. In Proceedings of the the ISOC
1995 Symposium On Network and Distributed System Security, pages
102{112, 1995.

[MHL94] Biswanath Mukherjee, L. Todd Heberlein, and Karl N. Levitt. Network
Intrusion Detection. IEEE Network, 8(3):26{41, May/June 1994.

[Mic95a] Microsoft Corporation. Microsoft Win32 Programmer's Reference, 1995.

[Mic95b] Microsoft Corporation. Windows NT Resource Guide, 1995.

[Mou95] Abdelaziz Mounji. User Guide for Implementing NADF Adaptors. Insti-
tut d'Informatique, Facult�es Universitaires Notre-Dame de la Paix, Na-
mur, Belgium, January 1995.

115

[Mou97] Abdelaziz Mounji. Languages and Tools for Rule-Based Distributed In-
trusion Detection. PhD thesis, Institut d'Informatique, Facult�es Univer-
sitaires Notre-Dame de la Paix, Namur, Belgium, September 1997.

[Nat85] National Computer Security Center. Department of Defense Trusted
Computer System Evaluation Criteria, December 1985. DoD 5200.28-
STD.

[Nat87] National Computer Security Center. A Guide to Understanding Audit in
Trusted Systems, July 1987. NCSC-TG-001.

[Neu90] Peter G. Neumann. Rainbows and Arrows: How the Security Criteria
Address Computer Misuse. In Proceedings of the 13th National Computer
Security Conference, pages 414{422, October 1990.

[NP89] Peter G. Neumann and Donn B. Parker. A Summary of Computer Mis-
use Techniques. In Proceedings of the 12th National Computer Security
Conference, pages 396{407, October 1989.

[Ope97] The Open Group, Berkshire, United Kingdom. Preliminary Speci�cation,
Distributed Audit Service (XDAS) Base { Draft 8, February 1997.

[Par94] Donn B. Parker. Demonstrating the Elements of Information Security
with Threats. In Proceedings of the 17th National Computer Security
Conference, pages 421{430, 1994.

[Pic87] J. Picciotto. The Design of An E�ective Auditing Subsystem. In Pro-
ceedings of the IEEE Symposium on Security and Privacy, pages 13{22,
April 1987.

[Por92] Phillip Andrew Porras. STAT, A State Transition Analysis Tool For
Intrusion Detection. Master's thesis, Department of Computer Science,
University of California, Santa Barbara, July 1992.

[Pow96] Richard Power. Current and Future Danager: A CSI Primer on Computer
Crime and Information Warfare. Technical report, Computer Security
Institute, 1996. second edition.

[Pow97] Richard Power. 1997 CSI/FBI Computer Crime and Security Survey.
Computer Security, Issues & Trends, 3(2):1{13, Spring 1997. Computer
Security Institute.

[Pre97] The President's Commission on Critical Infrastructure Protection. Crit-
ical Foundations: Protecting America's Infrastructures, October 1997.
Available from http://www.pccip.gov/.

[Pri96a] Katherine E. Price. Interview with Cathy Stallings at Los Alamos Na-
tional Laboratory, Los Alamos, New Mexico, November 1996.

116

[Pri96b] Katherine E. Price. Interview with Matt Bishop, Karl Levitt, Steven
Smaha, Gene Spa�ord, and Christopher Wee at CMAD IV, Monterey,
California, November 1996.

[Pro94] Paul Proctor. Audit Reduction and Misuse Detection in Heterogeneous
Environments: Framework and Applications. In Proceedings of the 10th
Annual Computer Security Applications Conference, pages 117{125, De-
cember 1994.

[PZC+96] Nicholas J. Puketza, Kui Zhang, Mandy Chung, Biswanath Mukherjee,
and Ronald A. Olsson. A Methodology for Testing Intrusion Detection
Systems. IEEE Transactions on Software Engineering, 22(10):719{729,
October 1996.

[RS91] Deborah Russel and G.T. Gangemi Sr. Computer Security Basics.
O'Reilly & Associates, Inc., 1991.

[SBD+91a] Steven R. Snapp, James Brentano, Gihan V. Dias, Terrance L. Goan,
Tim Grance, L. Todd Heberlein, Che-Lin Ho, Karl N. Levitt, Biswanath
Mukherjee, Douglass L. Mansur, Kenneth L. Pon, and Stephen E. Smaha.
A System for Distributed Intrusion Detection. In COMPCOM Spring '91,
pages 170{176, February 1991.

[SBD+91b] Steven R. Snapp, James Brentano, Gihan V. Dias, Terrance L. Goan,
L. Todd Heberlein, Che-Lin Ho, Karl N. Levitt, Biswanath Mukherjee,
Stephen E. Smaha, Tim Grance, Daniel M. Teal, and Doug Mansur.
DIDS (Distributed Intrusion Detection System) { Motivation, Archite-
cure, and An Early Prototype. In Proceedings of the 14th National Com-
puter Security Conference, pages 167{176, October 1991.

[Sib88] W. Olin Sibert. Auditing in a Distributed System: SunOS MLS Audit
Trails. In Proceedings of the 11th National Computer Security Confer-
ence, pages 82{90, October 1988.

[SM90] Kenneth F. Seiden and Je�rey P. Melanson. The Auditing Facility for
a VMM Security Kernel. In Proceedings of the IEEE Symposium on
Research in Security and Privacy, pages 262{277, May 1990.

[SM91] Samuel I. Schaen and BrianW. McKenney. Network Auditing: Issues and
Recommendations. In Proceedings of the 7th Annual Computer Security
Applications Conference, pages 66{78, December 1991.

[Sma88] Stephen E. Smaha. Haystack: An Intrusion Detection System. In Pro-
ceedings of the Fourth Aerospace Computer Security Applications Confer-
ence, pages 37{44, December 1988.

117

[Sma94] Stephen E. Smaha. svr4++, A Common Audit Trail Interchange Format
for UNIX. Technical report, Haystack Laboratories, Inc., Austin, Texas,
October 1994. Version 2.2.

[Sna91] Steven Ray Snapp. Signature Analysis and Communication Issues in a
Distributed Intrusion Detection System. Master's thesis, Department of
Computer Science, University of California, Davis, September 1991.

[SS92] Steven R. Snapp and Stephen E. Smaha. Signature Analysis Model Def-
inition and Formalism. In Proceedings of the 4th Workshop on Computer
Security Incident Handling and Response, August 1992.

[SSHW88] Michael M. Sebring, Eric Shellhouse, Mary E. Hanna, and R. Alan White-
hurst. Expert Systems in Intrusion Detection: A Case Study. In Pro-
ceedings of the 11th National Computer Security Conference, pages 74{81,
October 1988.

[SSTG92] Steven R. Snapp, Stepphen E. Smaha, Daniel M. Teal, and Tim Grance.
The DIDS (Distributed Intrusion Detection) Prototype. In Proceedings
of the Summer 1992 USENIX Conference, pages 227{233, June 1992.

[Sto89] Cli� Stoll. The Cuckoo's Egg. Pocket Books, 1989.

[Sun95] Sun Microsystems, Inc., Mountain View, California. SunSHIELD Basic
Security Module Guide, November 1995.

[Sun96] Aurobindo Sundaram. An Introduction to Intrusion Detection. Cross-
roads: The ACM Student Magazine, 2(4), April 1996.

[SW95] David G. Simmons and Ronald Wilkins. NERD Network Event Record-
ing Device: An Automated System for Network Anomaly Detection and
Noti�cation. In Proceedings of the the ISOC 1995 Symposium On Net-
work and Distributed System Security, pages 87{93, February 1995.

[Tal92] Anders Tallberg. The Property of Audit Trail. Technical Report C:252,
Swedish School of Economics and Business Administration, 1992.

[Vio96] Bob Violino. The Security Facade. Information Week, October 26 1996.

[VL89] H. S. Vaccaro and G. E. Liepins. Detection of Anomalous Computer
Session Activity. In Proceedings of the IEEE Symposium on Security and
Privacy, pages 280{289, May 1989.

[Wet93] Bradford Rice Wetmore. Paradigms for the Reduction of Audit Trails.
Master's thesis, Department of Computer Science, University of Califor-
nia, Davis, 1993.

118

[WFP96a] Gregory B. White, Eric A. Fisch, and Udo W. Pooch. Computer System
and Network Security. CRC Press Inc., 1996.

[WFP96b] Gregory B. White, Eric A. Fisch, and Udo W. Pooch. Cooperating Se-
curity Managers: A Peer-Based Intrusion Detection System. IEEE Net-
work, 10(1):20{23, January/February 1996.

[WK85] Patrick H. Wood and Stephen G. Kochan. UNIX System Security. Hay-
den Books, 1985.

[Zam96] Diego M. Zamboni. SAINT: A Security Analysis Integration Tool. In
Systems Administration, Networking and Security Conference, pages 3{
15, May 1996.

