
A TAXONOMY OF SECURITY FAULTS IN THE UNIX OPERATING SYSTEM

A Thesis

Submitted to the Faculty

of

Purdue University

by

Taimur Aslam

In Partial Ful�llment of the

Requirements for the Degree

of

Master of Science

August 1995



ii

This thesis is dedicated to my parents



iii

ACKNOWLEDGMENTS

I would like to thank my thesis advisor Dr. Eugene Spa�ord for guiding me through

my reaserch. Dr. Spa�ord provided me the insight to tackle di�erent problems, read

several drafts of the thesis and made invaluable comments. I also thank him for being

so patient and willing to work with my odd schedule. I also thank my committee

members: Dr. Aditya Mathur, Dr. Samuel Wagsta�, Dr. Michal Young. Dr. William

Gorman provided invaluable feedback to improve the format of this thesis.

I am greatly indebted to my parents for their support and encouragement over

the years. I would not have been able to make it this far without their support. I

am also grateful to my sister, for her support in so many di�erent endeavors and for

being a great friend.

I thank Dan Schikore, Mark Crosbie, Steve Lodin, and Muhammad Tariq, who

proofread manuscripts of my thesis and made invaluable comments. Thanks to all my

friends and everybody in the COAST lab, who provided much needed support and

made sure that I maintained my sanity. Thanks to Frank Wang for implementing the

front-end to the database prototype.

This acknowledgement would not be complete without mentioning Sadaf and some

very special people who have always been an inspiration to me.

This work was supported, in part, by: gifts from Sun Microsystems, Bell Northern

Research, and Hughes Research Laboratories; equipment loaned to the COAST group

by the U.S. Air Force; and a contract with Trident Data Systems. This support is

gratefully acknowledged.



THIS PAGE IS INTENTIONALLY LEFT BLANK



iv

TABLE OF CONTENTS

Page

LIST OF TABLES : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : vii

LIST OF FIGURES : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : viii

ABSTRACT : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : ix

0.1 An Overview of Software Testing Methods : : : : : : : : : : : : : : : 2
0.2 Provable Security and Formal Methods : : : : : : : : : : : : : : : : : 9
0.3 Security Testing : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 10
0.4 Applications of Fault Categories : : : : : : : : : : : : : : : : : : : : : 11
0.5 Organization of the Thesis : : : : : : : : : : : : : : : : : : : : : : : : 12

1. RELATED WORK : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 14

1.1 Protection Analysis Project : : : : : : : : : : : : : : : : : : : : : : : 14
1.2 RISOS Project : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 19
1.3 Flaw Hypothesis Methodology : : : : : : : : : : : : : : : : : : : : : : 21
1.4 Case Study: Penetration Analysis of the Michigan Terminal System : 23
1.5 Software Fault Studies : : : : : : : : : : : : : : : : : : : : : : : : : : 25

1.5.1 Fault Categories : : : : : : : : : : : : : : : : : : : : : : : : : : 27
1.6 Errors of TEX : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 31
1.7 A Taxonomy of Computer Program Security Flaws : : : : : : : : : : 32
1.8 Comparison of Security Fault Classi�cation Schemes : : : : : : : : : : 33

2. A TAXONOMY OF SECURITY FAULTS IN THE UNIX OPERATING
SYSTEM : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 35

2.1 A Taxonomy of Security Faults : : : : : : : : : : : : : : : : : : : : : 36
2.2 Con�guration Errors : : : : : : : : : : : : : : : : : : : : : : : : : : : 40

2.2.1 Examples : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 40
2.3 Synchronization Errors : : : : : : : : : : : : : : : : : : : : : : : : : : 41

2.3.1 Example : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 41
2.4 Condition Validation Errors : : : : : : : : : : : : : : : : : : : : : : : 42



v

Page

2.4.1 Examples : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 44
2.5 Environment Faults : : : : : : : : : : : : : : : : : : : : : : : : : : : : 46

2.5.1 Example : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 46
2.6 Selection Criteria : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 47

3. DESIGN OF THE VULNERABILITY DATABASE : : : : : : : : : : : : : 52

3.1 Motivation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 52
3.2 Entity Relation Model : : : : : : : : : : : : : : : : : : : : : : : : : : 53
3.3 Entity Attributes : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 53

3.3.1 Entity Relation Diagram : : : : : : : : : : : : : : : : : : : : : 56
3.3.2 Entity Integrity Constraints : : : : : : : : : : : : : : : : : : : 58
3.3.3 Referential Integrity Constraints : : : : : : : : : : : : : : : : : 58

3.4 Operation on the Relations : : : : : : : : : : : : : : : : : : : : : : : : 59
3.5 Requirements Analysis : : : : : : : : : : : : : : : : : : : : : : : : : : 61
3.6 Design Issues : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 63
3.7 Database Kernel : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 64

3.7.1 Representation of Relations : : : : : : : : : : : : : : : : : : : 65
3.8 Vulnerability Database Interface : : : : : : : : : : : : : : : : : : : : : 65
3.9 User Interface : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 67
3.10 Integrity Constraints : : : : : : : : : : : : : : : : : : : : : : : : : : : 70

3.10.1 Entity Integrity Constraints : : : : : : : : : : : : : : : : : : : 71
3.10.2 Referential Integrity Constraints : : : : : : : : : : : : : : : : : 72

3.11 Template Representation : : : : : : : : : : : : : : : : : : : : : : : : : 72
3.12 Data Sources : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 73
3.13 Requirements Analysis : : : : : : : : : : : : : : : : : : : : : : : : : : 74
3.14 Design Issues : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 77
3.15 Database Kernel : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 78

3.15.1 Representation of Relations : : : : : : : : : : : : : : : : : : : 79
3.16 Vulnerability Database Interface : : : : : : : : : : : : : : : : : : : : : 79
3.17 User Interface : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 81
3.18 Integrity Constraints : : : : : : : : : : : : : : : : : : : : : : : : : : : 83

3.18.1 Entity Integrity Constraints : : : : : : : : : : : : : : : : : : : 84
3.18.2 Referential Integrity Constraints : : : : : : : : : : : : : : : : : 85

3.19 Template Representation : : : : : : : : : : : : : : : : : : : : : : : : : 85
3.20 Data Sources : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 86

4. SECURITY FAULT DETECTION TECHNIQUES : : : : : : : : : : : : : 87

4.1 Static Analysis : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 87
4.2 Symbolic Testing : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 88
4.3 Path Analysis and Testing : : : : : : : : : : : : : : : : : : : : : : : : 89



vi

Page

4.4 Functional Testing : : : : : : : : : : : : : : : : : : : : : : : : : : : : 90
4.4.1 Syntax Testing : : : : : : : : : : : : : : : : : : : : : : : : : : 92

4.5 Mutation Testing : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 93
4.6 Condition Validation Errors : : : : : : : : : : : : : : : : : : : : : : : 94

4.6.1 Boundary Condition Errors : : : : : : : : : : : : : : : : : : : 94
4.6.2 Input Validation Errors : : : : : : : : : : : : : : : : : : : : : : 95
4.6.3 Access Right Validation Errors : : : : : : : : : : : : : : : : : 96
4.6.4 Origin Validation Errors : : : : : : : : : : : : : : : : : : : : : 97
4.6.5 Failure to Handle Exceptional Conditions : : : : : : : : : : : : 97

4.7 Environment Errors : : : : : : : : : : : : : : : : : : : : : : : : : : : : 98
4.8 Synchronization Faults : : : : : : : : : : : : : : : : : : : : : : : : : : 98
4.9 Con�guration Errors : : : : : : : : : : : : : : : : : : : : : : : : : : : 99
4.10 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 101

5. CONCLUSIONS AND FUTURE WORK : : : : : : : : : : : : : : : : : : : 103

BIBLIOGRAPHY : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 105

APPENDICES

Appendix A: Description of Software Fault Studies : : : : : : : : : : : : : 111
Appendix B: A Taxonomy of Unix Vulnerabilities : : : : : : : : : : : : : 112



vii

LIST OF TABLES

Table Page

1.1 Percentage of Errors Detected : : : : : : : : : : : : : : : : : : : : : : : : 26

1.2 Fault Categories by Rubey : : : : : : : : : : : : : : : : : : : : : : : : : 27

1.3 Fault Categories by Weiss : : : : : : : : : : : : : : : : : : : : : : : : : : 28

1.4 Comparative Results by Potier : : : : : : : : : : : : : : : : : : : : : : : 29

1.5 Bug Statistics by Beizer : : : : : : : : : : : : : : : : : : : : : : : : : : : 30

3.1 Vulnerability Entity Attributes : : : : : : : : : : : : : : : : : : : : : : : 54

3.2 Operating System Entity Attributes : : : : : : : : : : : : : : : : : : : : 55

3.3 Patch Info Attributes : : : : : : : : : : : : : : : : : : : : : : : : : : : : 55

3.5 Vulnerability Database Interface Functions : : : : : : : : : : : : : : : : : 66

3.4 Operations on Relations : : : : : : : : : : : : : : : : : : : : : : : : : : : 68

3.6 Vulnerability Database Interface Functions : : : : : : : : : : : : : : : : : 80

4.1 Comparison of Di�erent Software Testing Methods : : : : : : : : : : : : 102

Appendix
Table



viii

LIST OF FIGURES

Figure Page

0.1 A Conventional Taxonomy of Software Modeling and Analysis Techniques 5

0.2 E�ort vs. Testing Methods : : : : : : : : : : : : : : : : : : : : : : : : : 6

0.3 Relationship between Testing Methods and the Design Process : : : : : 8

2.1 Taxonomy of Faults : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 39

2.2 Selection Criteria for Fault Classi�cation : : : : : : : : : : : : : : : : : : 51

3.1 Entity Relation Diagram : : : : : : : : : : : : : : : : : : : : : : : : : : : 57

3.2 Referential Integrity Constraints : : : : : : : : : : : : : : : : : : : : : : 59

3.3 Vulnerability Database : : : : : : : : : : : : : : : : : : : : : : : : : : : : 60

3.4 Vulnerability Database Commands Screen : : : : : : : : : : : : : : : : : 69

3.5 Function Interface : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 70

3.6 Help Window : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 70

3.7 Vulnerability Database : : : : : : : : : : : : : : : : : : : : : : : : : : : : 74

3.8 Vulnerability Database Commands Screen : : : : : : : : : : : : : : : : : 82

3.9 Function Interface : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 83

3.10 Help Window : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 83

Appendix
Figure



ix

ABSTRACT

Taimur Aslam,M.S., Purdue University, August 1995. A Taxonomy of Security Faults
in the Unix Operating System. Major Professor: Eugene H. Spa�ord.

Security in computer systems is important to ensure reliable operation and protect

the integrity of stored information. Faults in the implementation can be exploited to

breach security and penetrate an operating system. These faults must be identi�ed,

detected, and corrected to ensure reliability and safe-guard against denial of service,

unauthorized modi�cation of data, or disclosure of information.

We de�ne a classi�cation of security faults in the Unix operating system. We state

the criteria used to categorize the faults and present examples of the di�erent fault

types.

We present the design and implementation details of a database to store vulner-

ability information collected from di�erent sources. The data is organized according

to our fault categories. The information in the database can be applied in static

audit analysis of systems, intrusion detection, and fault detection. We also identify

and describe software testing methods that should be e�ective in detecting di�erent

faults in our classi�cation scheme.



1

Security is de�ned relative to a policy and involves the protection of resources from

accidental or malicious disclosure, modi�cation or destruction [web88]. Computer

security can be broadly categorized as:

Physical security: Physical security is the protection of computer facilities against

physical threats and environmental hazards. It involves the use of locks, identi�-

cation badges, guards, personnel clearances, and other administrative measures

to control the ability to approach, communicate with, or otherwise make use of

any material or component of a data processing system [A+76].

Information security: Information security is the protection of data against acci-

dental or unauthorized destruction, modi�cation or disclosure. It involves both

physical security measures and controlled access techniques [A+76].

Interest in computer security stemmed from protecting information related to

matters of national security and grew as computers were used to store medical and

�nancial records of individuals, and proprietary information for business organizations

[Zwa92].

The security of a computer system is de�ned by security requirements and is

implemented using a security policy. The requirements vary according to the level

of security desired. Computer systems operate with implicit trust: the reliability of

a computer system depends on the reliability of its components. The security of a

computer system thus involves security of its hardware and software components.

The critical role played by operating systems in the operation of computer systems

makes them prime targets for malicious attacks. An operating system is penetrated

if an unauthorized user gains access to the system, or if an authorized user causes a

security breach by exploiting a aw in the source code. A total system penetration

occurs when an unprivileged user gains the ability to execute privileged commands

[H+80]. A penetration of a system can lead to one or more of the following conse-

quences [Den83, BS88, Lin75]:

� Denial of service: Users may be denied access to legitimate services.



2

� Degradation of performance: Performance can be so poor that the system is

not usable.

� Disclosure of information: A user gains unauthorized access to protected infor-

mation.

� Modi�cation of data: A user modi�es information in an unauthorized manner.

Security breaches result from operational faults, coding faults, or environment

faults. Operational faults consist of con�guration errors and policy errors. Coding

faults include programming logic errors, faults of ommision and faults of commision.

Environment faults occur when programmers do not pay su�cient attention to the

execution environment. These faults include errors that result from limitations of

the operational environment, and errors introduced when some functional modules

operate in an unexpected manner.

To ensure the reliable operation of a computer system, the implementation should

conform to the security requirements and should not contain any vulnerabilities:

faults that may be exploited to breach security. Faults introduced during software de-

velopment can be exposed by software testing techniques. Faults can be prevented in

software by using formal methods of veri�cation at each stage of development. These

two aspects of developing reliable software are discussed in the following sections.

0.1 An Overview of Software Testing Methods

The classic software engineering life-cycle paradigm for software engineering, also

known as the \waterfall model," is a sequential approach to the software development

process. The process begins at the system level and progresses through requirements

analysis, design, coding, testing and maintenance phases [Pre92, GJM91]. These steps

may not be followed in the speci�ed order and some may be omitted. The phases of

development are briey described below.



3

Systems engineering and analysis: Often the software being developed is part of

a larger system. Systems engineering establishes the requirements for all the

di�erent system components and de�nes how the software must interface with

other components.

Requirements analysis: During this phase, requirements-gathering is focused on the

software being developed and performance and interfacing requirements for soft-

ware are de�ned. During requirements analysis, a requirements speci�cation

document is developed that describes what the requirements phase has accom-

plished [GJM91]. The requirements speci�cations must be stated in a precise,

complete, consistent and understandable manner. This clarity ensures that the

requirements speci�cations document encompasses all the expectations of the

users and enables designers to develop software that meets the requirements

[IEE90, GJM91]. During requirements analysis, a functional speci�cations doc-

ument may also be produced that describes how the system will perform the

intended task [IEE90].

Design: Software design focuses on four attributes of the program: data structures,

software architecture, procedural detail, and interface characterization [Pre92].

The design phase results in a design speci�cations document, that contains a

description of the system architecture: a description of what each module in

the system is intended to do and the relationships among modules [GJM91].

During this phase, the design process is documented and is often translated in

a representation that can be assessed for quality.

Coding: During the coding phase, the design is translated using one or more appro-

priate programming languages.

Testing: A fault is induced by an error (a mistake by a human) and may lead to

failure [IEE90]. During the testing phase, the focus is on �nding faults in the

software that may have been introduced during the design or coding phases.



4

Maintenance: After the software has been developed and released, it may undergo

changes to adapt to di�erent environments and errors may be introduced in the

process. Software maintenance re-applies each of the preceding life-cycle steps

to an existing program.

The time spent in the testing phase is often dependent on the project. Pressman

[Pre92] and Ghezzi [GJM91] report that for typical projects about 30-40% of the total

development time is spent in testing and debugging. According to Myers [Mye76] the

maintenance and testing costs for typical installations of IBM OS/360 exceeded 80%

of the total cost.

The objective of the testing phase is to discover any faults that may have been

introduced during the coding or design phase. Although it is referred to as the testing

phase, fault detection is not restricted to conventional testing methods and any fault

detection technique may be employed.

Fault detection techniques can be classi�ed as dynamic analysis or static analy-

sis. Dynamic analysis techniques require the execution of the program being tested

and most conventional testing methods belong to this category [YT91]. Static anal-

ysis consists of code walk-throughs, and inspection of requirements and speci�cation

documents to �nd aws in the implementation. Figure 0.1 from [How81a, How81b]

illustrates the dichotomy of the analysis techniques.

Given a program P and speci�cations S, it is undecidable to determine if P con-

forms to S [YT91]. The presence of faults is generally an undecidable property.

Thus, it is not even theoretically possible to devise a fault detection technique that

is applicable to arbitrary programs [YT91]. Every practical technique incorporates a

compromise between accuracy and e�ort. Figure 0.2 adapted from [YT91] shows the

relationship between e�ort expended and di�erent types of testing methods.



5

Design-based testing

Informal checklists

Formal modeling

Functional testing

Testing by classes of 
input data

Testing by classes of
output data

Static analysis of design
documents

General information

Static error analysis

Symbolic execution

 Structural testing
 
 Expression testing

 Data-flow testing

Requirements

Design

Programs

Static Dynamic

Figure 0.1 A Conventional Taxonomy of Software Modeling and Analysis

Techniques



6

Mutation
testing

Branch
testing

Node testing

Path coverage

Exhaustive
testing

  Infinite Effort

Threshold of tractability

Time

Figure 0.2 E�ort vs. Testing Methods

The objective of software testing is not to show that a given program is free from

faults but to demonstrate their presence [Mye79]. Exhaustive testing of a program

would require in�nite e�ort and time to �nd all the faults in a program. As a com-

promise between time and e�ort, conventional testing methods rely on an adequacy

criteria to determine that adequate testing has been done and the test data being used

is adequate. A test data set is adequate if the program under test runs successfully

on the data set and all incorrect programs run incorrectly [DMMP87].

Several techniques for measuring the adequacy of test data have been proposed.

Path testing associates the adequacy of test data with the traversal of a subset of

all paths through the program under test [CPRZ89]. Mutation testing is another



7

method for determining the adequacy of test data and is based on inducing faults in

the program under test [DMMP87].

Another method of classifying dynamic fault detection techniques is as:

Functional testing: In functional (black box) testing, the internal structure and be-

havior of the program is not considered. The objective is to �nd out solely when

the input-output behavior of a program does not agree with its speci�cations

[DMMP87].

Structural testing: In this approach, the structure of the program is examined and

test cases are derived from the program's logic. Structural testing is also known

as white box testing [DMMP87].

Software testing is further re�ned into several categories by Myers [Mye76] as de-

scribed below. Fig 0.3 from [Mye76] illustrates the relationship between di�erent

types of testing methods and their relationship to the design process.

Unit testing: Unit testing is a white box oriented approach and focuses veri�cation

e�orts on a per module basis. It uses a detailed design description to exercise

important control paths within the module boundaries.

Integration testing: Integration testing is used to uncover interfacing errors between

unit-tested modules.

External testing: External testing is the veri�cation of the external system functions

as stated in the system speci�cations.

System testing: System testing attempts to fully verify the complete functionality

of the system. System testing is a veri�cation process when it is done in a

simulated environment; it is a validation process when it is performed in a live

environment.

Acceptance testing: Acceptance testing is the validation of the system or program

according to the user's requirements.



8

Installation testing: Installation testing is the validation of each particular installa-

tion of the system with the intent of discovering any errors made while installing

the system.

Requirements

Objectives

Specifications

System Architecture

Program Structure

Module Logic

Module Test

Integration Test

Function Test

System Test

Acceptance Test

Installation Test

      Module
  Specifications

Figure 0.3 Relationship between Testing Methods and the Design Process



9

0.2 Provable Security and Formal Methods

Software testing techniques can only establish the presence of faults not their

absence [Mye79]. Formal methods of veri�cation are used to ensure that faults are

not introduced during di�erent stages of development and the implementation is

formally proven to conform to the requirements and speci�cations. The applicability

of formal methods has been mostly restricted to proving small sections of programs

to make the process tractable. Hall in his introduction to formal methods [Hal90]

states:

\Formal methods are controversial. Their advocates claim that they can

revolutionize [software] development. Their detractors think they are im-

possibly di�cult. Meanwhile, for most people, formal methods are so

unfamiliar that it is di�cult to judge the competing claims."

Security kernels were designed to provide provable security and evolved from the

idea of a reference monitor described by Anderson [And72]. A reference monitor

is an abstraction of access checking mechanisms [Den83]. The idea behind security

kernels is to have a small nucleus of software that is responsible for administering

the security policy of the entire system. The implementation of a security kernel is

formally veri�ed to demonstrate that it conforms to the security requirements.

The requirements of a security kernel are stated in precise mathematical terms and

are known as the criteria for the system. The requirements are followed by stating

the speci�cations that precisely describe the function of the software in mathematical

terms. These speci�cations are independent of any implementation details and the

system is coded using a high order language (HOL). Finally, the implementation is

formally demonstrated to conform to the original requirements.

Several security kernels were developed to provide provable system security. These

included the Kernelized Secure Operating System [MD79], MITRE security kernel

[Sch75], MULTICS with AIM [SCS77], and the UCLA Data Secure Unix (DSU)

[PKKe79]. However, security kernels failed to gain wide-spread popularity because of



10

high development-costs, mediocre performance, and di�culties encountered in main-

taining the systems.

0.3 Security Testing

Software testing is a cost e�ective method to detect faults in software [Mye79].

Several software testing techniques have been proposed and have been studied widely

[Bei83, Mye76, Mye79]. These techniques provide cost-e�ective and systematic meth-

ods to detect faults in software. Similarly, security testing is intended to assess the

trustworthiness of the security mechanisms [Bei83]. Security testing is often regarded

as a special case of system testing [Bei83]. The emphasis of security testing is not to

establish the functional correctness of the software but to establish some degree of

con�dence in the security measures [Bei83].

At present there is no systematic approach to security testing. Traditional meth-

ods of detecting security faults include penetration analysis, and formal veri�cation

of security kernels [Lin75, MD79]. Penetration analysis is conducted by a tiger team,

which is comprised of personnel familiar with the abstract and implementation de-

tails of operating systems [Lin75]. Penetration analysis has proven to be a successful

method in assessing the security of a system [Lin75, H+80, Wil81, AMP76]. But the

success of this method depends on the competence of the tiger team members and

their knowledge of the system.

The importance of security in computer systems cannot be ignored. It is needed for

reliable operation, and to maintain the integrity of stored information. However, there

does not exist a systematic approach to detect or prevent security faults in operating

systems. Traditional security assessment methods are based on a \penetrate and

patch paradigm" where faults are �xed as they are discovered. The shortcoming of

this approach is succinctly summed up by Schell [Sch79a] as:



11

\Penetrate and patch is a losing approach to assure secure systems because

the hacker needs to �nd only one aw, whereas the vendor must �nd and

�x all the aws."

In the following section we discuss the motivation for developing a fault classi-

�cation scheme, and its applications in making the process of fault prevention and

detection more systematic.

0.4 Applications of Fault Categories

In this thesis we de�ne a classi�cation of security faults in the Unix operating

system and present applications of the classi�cation scheme. Faults can occur in dif-

ferent sections of source code, and can result in a wide range of consequences. A fault

classi�cation scheme can be used to categorize faults that share a common character-

istic. The categories can be used to collect statistics about faults and devise methods

for fault prevention and detection. Beizer [Bei83] summarized the importance of fault

classi�cations as:

"It is important to establish categories for bugs if you take the goal of

bug prevention seriously. If a particular kind of bug recurs or seems to

dominate the kinds of bugs you have, then it is possible through education,

training, new controls, revised controls, documentation, inspection, and a

variety of other methods to reduce the incidence of that kind of bug. If you

have no statistics on the frequency of bugs, you cannot have a rational

perspective on where and how to allocate your limited bug prevention

resources."

The objective of our fault classi�cation scheme was to unambiguously classify

security faults into non-overlapping categories. We applied the fault categories for

data organization in a vulnerability database and it was necessary to derive non-

overlapping categories.



12

The vulnerability database we designed can be used to store vulnerability infor-

mation from di�erent sources, and maintain security patch information. We identi�ed

several potential applications of the vulnerability information in the database. The

information can be used to analyze commonly occurring faults and trace their ori-

gin to a design or programming practice. If the fault cannot be corrected, defensive

mechanisms may be programmed in a system that take preventive actions when the

fault occurs.

The vulnerability information can also be used to con�gure audit tools that at-

tempt to �nd known vulnerabilities in a system [FS91, SSH93]. The information in

the database can also be used to write signatures that can be used by an intrusion

detection system to detect intrusions in real-time [KS94]. Furthermore, the database

may be used to devise thought experiments during the aw hypothesis stage of a

penetration analysis of a system [Lin75].

As security testing is a special case of software testing [Bei83], the fault categories

can be used to devise software testing techniques that expose faults in each category.

For instance, DeMillo and Mathur [DM91] used fault categories to detect errors re-

ported by Knuth in the development of TEX[Knu89]. Based on fault characteristics,

we identify software testing techniques that can be used to detect these characteris-

tics and expose faults in each category. These testing techniques can provide a more

systematic approach to fault detection as compared to the \penetrate and patch"

paradigm. This testing can be performed as part of system acceptance testing after

the software has been developed. Alternatively, these techniques can be used as part

of a penetration analysis to detect security faults, or as a guideline to develop new

attacks during the aw hypothesis stage.

0.5 Organization of the Thesis

In Chapter 1 we present a summary of related work in fault classi�cation and

penetration analysis. We present a revised taxonomy of security faults in the Unix

operating system in Chapter 2. The design and implementation of a vulnerability



13

database is discussed in Chapter 3. In Chapter 4 we discuss software testing methods

that can be applied to detect security faults. In Chapter 6 we present our conclusions

and outline future work.



14

1. RELATED WORK

Faults in operating system software can lead to security breaches. Knowledge of

the di�erent types of faults, their general characteristics, and the time they enter

the system is important to ensure reliable operation and to preserve the integrity of

stored information. These topics were the focus of fault classi�cation studies that

were conducted to make computer systems secure and to improve the reliability of

software. Another approach to �nd security faults is to assume the role of an intruder

and assess the security mechanisms by trying to break into the system. This approach

is the Flaw Hypothesis Methodology used in penetration analysis studies.

In the following sections we outline the previous research conducted on security

fault analysis, penetration analysis, and software fault classi�cation schemes. We

conclude with a discussion of the shortcomings of the previous fault classi�cation

schemes.

1.1 Protection Analysis Project

The Protection Analysis (PA) Project conducted research on protection errors in

operating systems during the mid-1970s. The group published a series of papers,

each of which described a speci�c type of protection error and presented techniques

for �nding those errors. The proposed detection techniques were based on pattern-

directed evaluation methods, and used formalized patterns to search for corresponding

errors [CBP75]. The results of the study were intended for use by personnel work-

ing in the evaluation or enhancement of the security of operating systems [BPC75].

The objective of the study was to enable anyone with little or no knowledge about



15

computer security to discover security errors in the system by using the pattern-

directed approach. The errors that were found in the systems were classi�ed into four

representative categories as follows:

� Domain errors, including errors of exposed representation, incomplete destruc-

tion of data, incomplete destruction of content, and incomplete destruction of

context

� Validation errors, including boundary condition errors and failure to validate

operands

� Naming errors, including aliasing and incomplete revocation of access to a

deallocated object.

� Serialization errors, including multiple reference errors and interrupted atomic

operations

The PA project did not achieve its goal of fully automating the error detection

process by using the pattern-directed approach. The proposed techniques could not be

automated easily and their vulnerability database was never published. However, the

group's research was an important step in formalizing the process of error detection.

Some pertinent work is outlined below.

Inconsistency of a Single Datum Over Time

Bibsey et al. [BPC75] described a general class of problems in which a value

becomes inconsistent after it is veri�ed. These errors are also referred to as time-of-

check-to-time-to-use (TOCTTOU) errors. These type of errors could be classi�ed as

validation errors in the error classi�cation scheme proposed in the �nal report of the

PA project [BH78].

If the value of a variable in a critical function is inadvertently or intentionally

replaced with a di�erent value after it has been veri�ed, the operating system can be



16

fooled into using this new value. This can lead to a security breach if the variable is

part of a critical check because the entire check will be invalidated.

[BPC75] illustrated how a critical value change can lead to a security breach by a

user-callable routine shown below.

connect:PROCEDURE(directory, password, code);

CALL password_check(directory, password, code);

IF code = 'ok' THEN

user_directory = directory;

END;

connect is a user-callable supervisor procedure that allows users to change their

current directory to a di�erent one than that was speci�ed at login. The procedure

requires as arguments the name and password of the new directory and returns the

result of the request to the user in the variable code. connect calls another supervisor

procedure password check to verify the correctness of the fdirectory,passwordg pair.

A return code of ok indicates that the directory was changed, otherwise an error code

is returned.

The connect procedure assumes that the value of directory in line 4 is the same

as that checked by password check. It also assumes that the value of code in line

3 is the same as that returned by passwd check. The entire password check would

be invalidated if the values of code and passwd check were changed after they had

been checked but before being used. The value of the variables could be changed in

one of the following ways [BPC75].

1. If the parameter was passed by name or reference, the value remains in the

caller's address space throughout the execution of the program. Any asyn-

chronous process that has write access to the caller's address space can change

the value.

2. If the parameter was passed by name or reference, the calling procedure could

arrange that the input and output variables occupy the same memory location.



17

When the called procedure stored into the output location, it would overwrite

the value of the input parameter.

The consistency of a data value between successive operations may be formulated as

the policy :

(B,M,X) =) for some operation L occurring before M, either

[for operation L which does not modify Value(X),

Value(X) before L = Value(X) before M], or

Value(X) after L = Value(X) before M.

Informally, process B can perform operation M on variable X only if the value of X

when M is performed is equal to the value of X either before or after some operation

L which occurs before M.

The error statement corresponding to the policy statement is given as:

B: M(X) and for some operation L occurring before M,

[for operation L which does not modify Value(X),

Value(X) before L != Value(X) before M], and

Value(X) after L != Value(X) before M.

Process B performs operation M on variable X and the value of X at the time operation

M is performed is not equal to the value of X either before or after some operation L

which occurs before M.

The error statement could be used to form a search pattern to detect if such an

error exists in the source code. Bibsey [BPC75] reported that forty-seven MULTICS

routines were searched using an error pattern and seven of themwere found to contain

errors that could be classi�ed as TOCTTOU errors.

Allocation/Deallocation of Residuals

This section describes errors in operating systems that result from exposed content

and incomplete revocation of access to storage elements. Errors of this type are

classi�ed as naming errors in the classi�cation proposed in the �nal report of the PA

project [BH78].



18

A common strategy used in penetration attacks is scavenging or searching for

residual information from other processes [HB76]. Residuals can be classi�ed into

[HB76]:

Content residual: Contents of �le space or memory are allocated to a new process

without the data from the previous allocation having been purged.

Attribute residual: Information such as the size or position in the free pool of re-

source is made available to a di�erent process.

If attribute and content residuals are preserved, they can be exploited by commu-

nicating processes to get information about the activity of the process [HB76]. Two

important attribute residuals that can disclose security related information are cell1

size, and inter and intra-cell relationships. For example, if the cell size information

is available to a user, it may be used to guess the maximum length of the password

�eld, which can reduce the number of permutations required in a brute force attack.

Similarly, the relative position of di�erent cells in the free pool can be used to deduce

that the previous cell allocations were part of a larger process-de�ned cell.

Content residual information can be prevented from being disclosed by formulating

a deallocation policy that either destroys the contents of storage cells when a cell is

added, or after the cell is extracted from the free pool. The latter is less desirable

because a functional error in the systemmay lead to the contents being exposed while

the cell is in the free pool. The deallocation mechanism can also be designed such

that particular attribute information is destroyed before a cell is added to the free

pool.

In addition to content residuals, access residual information also poses a security

problem and should be prevented. An access residual occurs when a process can

still access a storage cell after it has deallocated it, or an access path to it has been

established as a side e�ect of another request.

1a unit of storage



19

Hollingworth [HB76] did not propose a formal search strategy to detect alloca-

tion/deallocation errors. It was suggested that the allocation and deallocation mecha-

nisms should be manually checked to ensure that content, attribute, or access residuals

are not preserved.

Serialization

Serialization refers to the ordering of operations relative to one another. Seri-

alization errors result from errors in ordering speci�cations, either at the policy or

mechanism level [Car78]. Serialization errors qualify as protection errors because they

can be exploited to corrupt data objects that consequently result in invalid operations.

However, serialization errors are underestimated as security errors, because they usu-

ally do not manifest themselves directly and rarely occur during the operation of a

system [Car78]. Carlstead [Car78] provides an in-depth explanation of serialization

errors, including a theoretical treatment of the subject.

1.2 RISOS Project

The RISOS project was a study of computer security and privacy conducted in

the mid-1970s [A+76]. The project was aimed at understanding security problems

in existing operating systems and to suggest ways to enhance their security. The

systems whose security features were studied included IBM's OS/MVT, UNIVAC's

1100 Series operating system, and Bolt Beranek and Newman's TENEX system for

the PDP-10.

The �nal report of the project discussed several issues related to data security in

general. It suggested administrative actions that could prevent unauthorized access to

the system and methods to prevent disclosure of information. The main contribution

of the study was a classi�cation of integrity aws found in the operating systems

studied.

The fault categories proposed by researchers of risos [A+76] are the following.



20

� Incomplete parameter validation

Processes in an operating system communicate with each other using procedure

calls. To maintain reliable operation, the parameters must be validated for data

types, number and order, value and range, access rights to storage location, and

consistency [A+76]. These checks must specially be enforced when a procedure

call is made by a process that requests services from another process with a

higher set of privileges. Failure to validate the parameters completely or thor-

oughly may result in an ampli�cation of access rights of a subject, which may

be exploited to cause a security breach.

� Inconsistent parameter validation

Inconsistent parameter validation is a design error and di�erent from parameter

validation errors. If there are multiple sets of validation criteria in a system

that are not consistent, an inconsistent parameter validation error occurs when

a routine evaluates a condition that it considers valid.

� Implicit sharing of privileged/con�dential data

If information from a higher privileged process or user becomes available to a

lesser privileged process or user, an implicit disclosure of information has taken

place. To preserve the integrity of stored information and security of the system,

it is important that such errors be prevented from occurring in the operating

system software.

� Asynchronous-validation/Inadequate-serialization

This category is comprised of errors that occur if serialization is not enforced

during the time a value is stored and the time it is referenced (time-of-check-to-

time-to-use errors). These errors can usually be exploited to penetrate a system

during a small timing window.

� Inadequate identi�cation/authentication/authorization



21

Authorization refers to the controlled granting of access rights and is based on

authentication of individuals and resources [A+76]. Operating system security

may be compromised if:

{ it does not require authorization for an individual or process

{ it does not uniquely identify the resources it is dealing with

� Violable prohibition/limit

Operating system code contains many �xed-sized data structures such as tables,

queues, and stacks. If these data structures overow, the system may behave

in unexpected ways that may lead to a security compromise.

� Exploitable logic errors

Some errors in operating system software may exist because of improbable tim-

ing conditions, incorrect error handling, or instruction side-e�ects. For exam-

ple, handling an error condition before an error signal is raised, or using half

word arithmetic to store a return address from a routine can be regarded as

exploitable logic errors.

1.3 Flaw Hypothesis Methodology

System Development Corporation (SDC) conducted penetration analyses of seven

government and industrial installations to assess the secure-worthiness of their sys-

tems. This led to the formulation of the Flaw Hypothesis Methodology that was

successfully used in these penetration studies.

Linde [Lin75] summarizes the importance of penetration analysis as:

\In the absence of more formal correctness proof techniques, penetrations

are the most cost e�ective method for assessing vulnerabilities. Exhaus-

tive testing of an operating system's security controls is di�erent than

subjecting them to a penetration attack. System testing is intended to



22

discover implementation errors; whereas penetration tests are used to ex-

amine an implementation and from these analyses infer areas of possible

design weaknesses."

The Flaw Hypothesis Methodology is a strategy for penetrating an operating system

as well as for isolating generic functional aws that can be used for determining

weaknesses in the functional areas of the operating system design [Lin75]. The four

stages of the methodology are outlined below.

Knowledge of system's control structures: For a successful penetration, a penetrator

should have an understanding of how the users interact with the system, what

services are available to them and the constraints placed on those services. In

addition, a penetrator should have an abstract as well as implementation level

knowledge at the following levels:

� inter-module knowledge

� access control mechanism

� control object hierarchy

� intra-module design

� implementation

Flaw hypothesis: During the aw hypothesis stage, the penetration team makes a

hypothesis about the existence of a vulnerability in the system by studying

system source code and any related documentation.

Flaw hypothesis con�rmation: This stage of the methodology involves con�rming

the aw hypothesis by using live attacks or by writing programs to exploit the

potential vulnerability.

Flaw generalization: In this stage, the penetration team makes a generalized hy-

pothesis about the existence of a aw based on their knowledge of errors in



23

other similar systems, or by analyzing aws discovered in di�erent functional

modules of the system under study.

Based on the successful penetrations, Linde [Lin75] observed that some modules

were found to be more vulnerable than others and it is recommended that these

should be inspected in a penetration analysis. The functional modules that should

be inspected for security aws include:

� Input/Output control

� Program and data sharing

� Access Control

� Installation management/operation control

The main contribution of this study was the formulation of the Flaw Hypothesis

Methodology for system penetration. This methodology was later successfully used

in several penetration analysis studies [H+80, AMP76, Wil81]. Despite its usefulness,

the methodology has some drawbacks. It does not provide a systematic approach to

testing the security mechanisms. Also, the success of a penetration analysis depends

on the knowledge and expertise of the tiger team conducting the study. As with most

testing techniques, penetration testing can only show the existence of security aws

| not their absence.

1.4 Case Study: Penetration Analysis of the Michigan Terminal System

Presented in this section is a case study of a penetration analysis conducted by

a graduate level computer science class at the University of Michigan, Ann Arbor

[H+80]. The goals of this study were for an authorized and knowledgeable but un-

privileged user to gain unauthorized access to �les and data, and crash the system.

MTS was a general purpose operating system for IBM 360/370 computers and sup-

ported both batch and interactive computation. The system under study maintained



24

about 2,500 user accounts and could support 250 users concurrently. The members

of the tiger team conducting the penetration analysis were students enrolled in the

course and had several years of experience in using the system. The team members

had access to all user-level documentation and manuals, as well as internal system

documentation.

The penetration team employed the Flaw Hypothesis Methodology to �nd aws

in the operating system and discovered a number of aws in some of the system

subroutines. It was found that the parameter checking mechanisms were weak and

would allow a user to store arbitrary bit sequences in the system segment. The system

segment in MTS contained much of the system's accounting and protection informa-

tion. Thus, by storing an arbitrary bit sequence a user could modify the system's

accounting information, change his privilege level and completely disable the pro-

tection mechanisms. As a consequence, users could execute privileged instructions,

disable hardware storage protection and modify shared segments. In MTS, the super-

visor code is also contained in the shared segment. Thus, by forcing an appropriate

bit pattern to be stored in the shared segment, users could switch the system to su-

pervisor mode and gain complete control over the system. This is the also known as

total system penetration and is the ultimate goal of a penetration study [H+80].

Some other aws were also found in the system that resulted in non-total system

penetrations. One such aw allowed users to bypass the normal accounting update

and get free computer time by forcing a job into abnormal termination. It was also

discovered that some shared memory segments contained sensitive information such

as user passwords and tape identi�cation that could lead to disclosure of information.

In the denial of service attacks, the system could be forced to loop forever while in

supervisor mode, when presented with a particular instruction sequence.

The study concluded that penetration analysis, if properly done, can provide an

actual estimate of the amount of time and e�ort needed to penetrate a system [H+80].

Even though this work factor may be subjective and imprecise, it still can give a

valid assessment of a system's overall security and highlight its areas of strength and



25

weaknesses. The study also highlighted the interdependence of di�erent modules as

an important area of consideration because system routines execute with an implicit

trust on each other. Any security violation at the lowest security level can lead to a

cascading e�ect that can cause security of the entire system to be compromised.

1.5 Software Fault Studies

Marick [Mar90] published a survey of software fault studies from the software

engineering literature. Most of the studies reported faults that were discovered in

production quality software. Outlined in this section is a summary of the results from

various software fault studies. For brevity, the citation index is used for reference to

the study. A brief description of these studies is included in Appendix A.

� Faults in programming logic are common.

Programming logic errors refer to errors that are introduced in the software

because of a misunderstanding of the problem area [Mar90]. These errors may

be introduced in the software because of incorrect design, or incorrect logic.

Studies by Dniestrowski [DGM78], Lipow [Lip79], and Motley [MB77] found

that programming logic faults were the largest type of faults. In other studies,

Rubey [Rub75] and Glass [Gla81] also regarded programming logic faults as

being serious.

� Faults of omission are important.

Most faults in the survey were faults of commission and few were faults of omis-

sion [Mar90]. Glass [Gla81] studied faults that were discovered after delivery

of the software. He observed that faults of omission are the most likely faults

to survive. Basili and Rombach [BR87] found that most interface faults were

omissions, while data handling and computation faults were mostly faults of

commission.

� Data handling is more error-prone than computation.



26

Data handling refers to the process of initializing and changing variables, to

distinguish from computation faults, which include evaluation of arithmetic and

boolean expressions [Mar90].

Basili [BR87] and Glass [Gla81] reported that data handling faults were nu-

merous in their study. Studies by Rubey [Rub75] Basili and Perricone [BP84],

Lipow [Lip79], Motley [MB77], and Ostrand and Weyuker [OW84] reported

such faults to be of average frequency.

� Static and dynamic detection techniques are approximately equally e�ective.

Neither detection technique can detect all the faults in the implementation.

Static analysis techniques have proven to be successful at exposing 30-70% of

logic and design errors in a typical program [DMMP87]. Dynamic techniques

can expose run-time errors that may not be detected by static analysis. Accor-

ding to four studies reported by Marick [Mar90] there is no convincing evidence

that one technique outperforms the other. The percentage of errors detected

using the two techniques is shown in Table 1.1.

Study Static Analysis Dynamic Analysis

[Rub75] 44% 56%

[SB75] 55% 45%

[DGM78] Weak complexity modules 70% 30%

[DGM78] Greater complexity modules 50% 50%

[WB85] 29% 40%

Table 1.1 Percentage of Errors Detected

Note: In the study by Dniestrowski et al. [DGM78] weak complexity modules

refer to modules containing mostly arithmetic and boolean expressions. Greater

complexity modules contain I/O drivers, and real-time management code.



27

� There is evidence that both small and large modules are more error-prone than

medium sized modules.

Studies by Basili and Perricone [BP84] and Shen et al. [Y+85] observed that

smaller modules have higher fault rates. This observation is also con�rmed by

Withrow [Wit90] in her study of Ada programs.

� No conclusion about development phases is possible.

The percentage of faults introduced during the di�erent phases of the software

life cycle vary from 26% to 83%, making it di�cult to draw any conclusive

decisions about the time a fault was introduced.

1.5.1 Fault Categories

Rubey [Rub75] presented several fault categories and the percentage of fault oc-

currence in a study of small commercial real-time control programs. The results are

shown in Table 1.2.

Fault Category Percentage

Incomplete or erroneous speci�cations 28

Intentional deviation from speci�cation 12

Violation of programming standards 10

Erroneous data access 10

Erroneous decision logic or sequencing 12

Erroneous arithmetic computations 9

Invalid timing 4

Improper handling of interrupts 4

Wrong constant or data value 3

Inaccurate documentation 8

Table 1.2 Fault Categories by Rubey



28

Weiss [WB85] reported 143 faults in a project to develop a hardware architecture

simulator coded in 10,000 lines of Fortran. The faults included in the study were

reported during development and after delivery. The fault categories byWeiss [WB85]

are shown in Table 1.3. In the categories proposed by Weiss [WB85] language refers

to misunderstanding a Fortran language construct, and clerical and careless ommision

refers to a misunderstanding of the design concept.

Fault Category Percentage

Requirements 6

Design 19

Interface 6

Coding Speci�cations 13

Language 8

Coding Standards 2

Careless ommision 10

Clerical 36

Table 1.3 Fault Categories by Weiss

Table 1.4 presents results from a comparative study published by Potier [PAFB82].

Potier collected over 1000 faults found in a compiler for TLR (a high level language).

Most of the faults were detected during testing. Potier et al. compare their �ndings

with those published in [Lip79] and [MB77].



29

Category [PAFB82] [Lip79] [MB77]

Computational 6% 9% 9%

Logic 38% 26% 26%

I/0 2% 14% 16%

Data handling 15% 18% 18%

Interface 19% 16% 17%

Data de�nition 19% 3% 1%

Data base 1% 7% 4%

Others 0% 7% 9%

Table 1.4 Comparative Results by Potier

Beizer [Bei83] collected a sample of 126,000 program statements (mostly exe-

cutable) and 2070 faults from fault studies conducted by Dniestrowski et al. [DGM78],

Endres [End75], Rubey et. al [RDB75], and Schneidewind [Sch79b]. Based on these

statistics, Beizer proposed a classi�cation scheme and categorized the faults into the

di�erent categories. These categories and the fault statistics are shown in Table 1.5.



30

Category Number Percentage of occurrence

Functional

Speci�cation 404

Function 147

Test 7

Total 558 27

System

Internal Interface 29

Hardware(I/O devices) 63

Operating System 2

Software Architecture 193

Control or Sequence 43

Resources 8

Total 338 16

Process 27

Arithmetic 141

Initialization 15

Control or Sequence 271

Static Logic 13

Other 12

Total 560 27

Data 36

Type 34

Structure 34

Initial Value 51

Other 120

Total 201 10

Code 78 4

Documentation 103 5

Standards 166 8

Other 62 3

Table 1.5 Bug Statistics by Beizer



31

1.6 Errors of TEX

TEX is a typesetting software developed by D.E. Knuth. Knuth presented a

chronological record of errors discovered during the development process and pro-

posed a classi�cation scheme to organize the errors [Knu89]. The classi�cation scheme

was based on essential functionality rather than on the external form of the program

[Knu89]. This error classi�cation is included in our study because it is representative

of errors made by competent and experienced programmers. A revised classi�cation of

these errors was used by DeMillo and Mathur [DM91] to detect errors using mutation

testing.

The fault categories proposed by Knuth are as follows.

A. an algorithm gone awry

B. a blunder or a mental typo

C. a clean-up for consistency or clarity

D. a data structure debacle

E. an e�ciency enhancement

F. a forgotten function

G. a generalization or growth of ability

I. an interactive improvement

L. a language liability

M. a mismatch between modules

P. a promotion of portability

Q. a quest for quality

R. reinforcement of robustness



32

S. a surprising scenario

T. a trivial typo

In Knuth's classi�cation, A,B,D,F,L,M,R,S, and T represent bugs which had to be

�xed for the correct functioning of the program [Knu89]. Categories C,E,G,I,P, and

Q represent enhancements which were introduced to improve performance [Knu89].

1.7 A Taxonomy of Computer Program Security Flaws

Landwehr et al. [L+93] published a collection of security aws in di�erent op-

erating systems and classi�ed each aw according to its genesis, or the time it was

introduced into the system, or the section of code where each aw was introduced.

This study was motivated by the observation that the history of software failures is

mostly undocumented and a study that cataloged system failures could help system

designers in building better and secure systems. The authors remark that:

\Knowing how systems have failed can help us build systems that resist

failure."

An outline of the three categories in the taxonomy is presented below.

By Genesis: The genesis of a aw is categorized as malicious or non-malicious. Ma-

licious aws are intentionally introduced in the system to cause a security vio-

lation. These take the form of viruses, worms, Trojan horse, time bombs, and

trap doors in the code [L+93]. Non-malicious aws are introduced because of

an implementation error, missing requirements, or misunderstanding of design

logic. Most non-malicious aws can belong to one of the following categories.

� Validation errors

� Domain errors

� Serialization/aliasing errors



33

� Errors that result from inadequate identi�cation/authentication

� Boundary condition errors

� Logic errors

By time of introduction: Flaws are categorized according to the time in the software

life cycle that they were introduced into the system. Time of introduction

includes aws that were introduced during development, maintenance, and op-

eration.

By location: In this category, aws are classi�ed based on their location in operating

system routines, support software, or user programs. Flaws in operating system

are further classi�ed into categories corresponding to the functional modules

where they are discovered.

1.8 Comparison of Security Fault Classi�cation Schemes

In chapter 2 we present a taxonomy of security faults in Unix. The objective of our

fault classi�cation scheme was to unambiguously classify faults into non-overlapping

categories. This classi�cation was then used for data organization in the design of

a vulnerability database and to identify fault detection techniques. In this section

we discuss the shortcomings of the existing security fault classi�cation schemes in

applying them for data organization.

The research conducted by the Protection Analysis Project was aimed at formu-

lating pattern matching techniques to detect security faults in the system source code

[CBP75]. The search strategies were based on the use of formalized patterns and an-

alyzed the syntactic structure of the program. An error was detected if a sequence of

operations matched the corresponding error pattern. The �nal report of the project

proposed four representative categories of faults [BH78]. These fault categories were

designed to group faults based on the syntactic structure and were too broad to be

used for data organization. Each category in the classi�cation consisted of several



34

types of faults. This would have made it di�cult to unambiguously classify faults

and would not have allowed speci�c queries to be performed on our database.

Seven generic fault categories were published in the �nal report of the risos

project [A+76]. These fault categories were developed with the goal of better under-

standing the faults and to classify and analyze new faults as they were discovered

[A+76]. The fault categories proposed by researchers of risos were general enough

to classify faults from several operating systems. But the generality of the fault cat-

egories would have prevented �ne-grained queries to be performed on our database.

Also, the criteria used for the classi�cation was not clearly stated. This could lead

to ambiguities when classifying di�erent faults and a fault could be classi�ed in more

than one category.

Landwehr et al. [L+93] proposed a taxonomy of aws found in di�erent operating

systems. The objective of this taxonomy was to identify the time during the software

life-cycle that a fault was introduced in the system. The taxonomy categorized aws

according to genesis, location in the system software, and time of introduction. These

three fault categories were further divided into sub-categories. This fault classi�ca-

tion was not used for data organization in our database because faults could not be

categorized into Landwehr's proposed categories based only on their description. For

example, to classify a aw as either being malicious or non-malicious involves a deci-

sion about the intentions of the programmer. This is di�cult to judge, without access

to the source code and knowledge of the programming environment. Also, it is not

possible to correctly predict the time a aw was introduced in the system based only

on its description [Mar90]. Such a decision could not be made without knowledge of

detailed progress reports and milestones met during a project. Similarly, the location

where a aw was discovered cannot be easily classi�ed without access to the source

code.



35

2. A TAXONOMY OF SECURITY FAULTS IN THE UNIX OPERATING
SYSTEM

In this chapter we present a taxonomy of security faults in the Unix operating

systems. We present the motivation for developing the taxonomy, followed by a

discussion of the di�erent fault categories in the classi�cation.

Security errors in operating systems are software faults that are intentionally or

inadvertently introduced in the system and can cause a security breach: an action

that violates a security policy. The operating system plays an important role in the

operation of a computer system and the presence of a security fault poses a potential

threat to disrupt reliable operation of the system. A security fault may be exploited

to cause denial of service, disclosure of information, or degrade performance of the

system. To prevent unauthorized and authorized users from disrupting reliable oper-

ation, the security mechanisms of an operating system should be able to withstand

malicious attacks and the implementation should not contain any faults that may be

exploited to breach security.

Security of computer systems is important so as to maintain reliable operation and

to protect the integrity of stored information. With the wide-spread use of comput-

ers and increasing computer knowledge it is no longer possible to implement security

through obscurity [GS91]. To ensure that computer systems are secure against ma-

licious attacks, we need to analyze and understand the characteristics of faults that

can subvert security mechanisms. A classi�cation scheme can help in the understand-

ing of fault characteristics by categorizing faults that share common characteristics.

This classi�cation can be used to organize vulnerability data, gather statistics about

frequency of faults, and devise prevention or detection techniques.



36

2.1 A Taxonomy of Security Faults

In this chapter we present a taxonomy of security faults in the Unix operating

system. The motivation of the study was to unambiguously classify security faults

into distinct categories. This classi�cation was used as the basis for data organization

of a vulnerability database that facilitated di�erent queries to be performed on the

stored data. The speci�c characteristics of faults in each category have also been used

to identify software testing techniques that can detect those faults. These testing

methods can provide a systematic approach to detect security faults as compared to

the traditional \penetrate and patch" paradigm.

Our fault classi�cation scheme is not unique. Several security fault classi�cation

schemes have been proposed that categorized faults according to di�erent criteria.

These include the classi�cations proposed in the �nal report of the Protection Anal-

ysis Project [BH78], a classi�cation proposed by researchers of the risos project

[A+76], and a taxonomy of aws proposed by Landwehr et al. [L+93]. However,

these classi�cations are not suitable for data organization because the categories are

too generic, and do not clearly specify the criteria used for the classi�cation. The

latter often leads to ambiguities that can result in a fault being classi�ed in more

than one category. Our taxonomy addresses these shortcomings. The fault categories

we present are speci�c and distinct. We also specify a selection criteria for each fault

category.

Our taxonomy was derived from security faults in the Unix operating system

that led to a security compromise. Other taxonomies discussed earlier [A+76, L+93,

BH78] were based on faults collected from several di�erent operating systems. We

focused on Unix because of its wide-spread popularity in academia and industry.

Thus, a large number of users would bene�t from the results of a study based on Unix

vulnerabilities. The security faults were collected from a number of di�erent sources

including Computer Emergency Response Team (CERT) advisories, vulnerabilities

reported on an electronic security mailing list, and a survey of the literature.



37

After collecting the security faults, we gathered information on how each fault

was exploited, the functional area a fault was found in, versions of operating systems

that each fault was present, and the consequences that occurred when the fault was

exploited. This information was collected from references in literature, descriptions

of faults in the response team advisories, and discussions with experienced personnel.

After understanding the details, we broadly classi�ed faults as either coding faults,

operational faults, or environment faults.

Personnel, communication, physical, and operations security play an essential role

in the reliable operation of computer systems [ISV95]. Vulnerabilities in any of these

classes may be exploited to cause a security compromise. We have focused on faults

that are embodied in the software. We have not included vulnerabilities that involved

personnel, communication, physical, or operations security. Examples of vulnerabili-

ties in these security classes include:

Personnel security: An employee is bribed to reveal sensitive information.

Communication security: A wiretap is installed to monitor information on a channel.

Physical security: An intruder or an employee steals a disk or tape containing sen-

sitive information.

Operations security: An operator fails to run software that could detect potential

security weaknesses.

Coding faults are comprised of faults that were introduced during software devel-

opment. These faults could have been introduced because of errors in programming

logic, missing or incorrect requirements, or design errors. These observations are

drawn from di�erent software fault studies that list the aforementioned errors as po-

tential problem areas [Rub75, WB85, PAFB82, Bei83, Knu89]. Operational faults

result from improper installation of software. Most policy errors can be classi�ed as

operational faults. Environment faults result when a programmer fails to completely

understand the limitations of the run-time environment or interactions between func-

tionally correct modules. These faults are dependent on the operational environment.



38

Coding and operational fault categories were further re�ned into distinct sub-

categories. For coding faults, we studied the faults to identify the speci�c coding

error that led to the fault. We tried to abstract each implementation error to a level

that would maintain the speci�c characteristics of each category yet hide the imple-

mentation details. This approach can be bene�cial in classifying faults in more than

one programming language. The fault categories were then used to group di�erent

faults that shared similar characteristics. For operational faults, we identi�ed the

speci�c operation that had led to the fault and used it to categorize the faults.

In the following sections, we present our taxonomy of faults. For each fault cat-

egory we present a description of the fault, the criteria used, and examples of the

di�erent fault types.

The taxonomy of faults is comprised of the following categories:

Operational Faults

� Con�guration errors to include errors resulting from:

{ programs/utilities installed in the wrong place

{ programs/utilities installed with incorrect setup parameters

{ programs/utilities or secondary storage objects installed with access per-

missions that violate the security policy

Coding Faults

� Synchronization errors to include:

{ race condition errors

{ errors resulting from improper or inadequate serialization of operations

� Condition validation errors to include errors resulting from:

{ missing conditions

{ incorrectly speci�ed conditions



39

{ missing predicates in the condition

Environment Faults

Environment faults include:

{ errors resulting from a limitation of the operational environment

{ errors introduced by a faulty compiler or operating system

{ interaction errors between functionally correct modules

{ errors introduced becuase exception handling mechanisms are di�erent

than expected

Figure 2.1 shows a diagrammatic representation of our fault taxonomy.

security fault

coding fault

condition

validation error

boundary

condition

error

access rights

validation

error

origin

validation

error

input

validation

error

permissions

operational

fault

configuration

error

utility installed

with incorrect

setup 

utility 

installed in the

wrong place

object 

installed with

incorrect
parameters

error

synchronization

improper 

or inadequate
serialization
error

race

error
condition

field  value syntax

error
correlation
error

type & 
number of 
input fields input 

missing extraneous

environment
fault

failure
to handle
exceptions

input 

Figure 2.1 Taxonomy of Faults



40

2.2 Con�guration Errors

The con�guration of a system can be broadly de�ned as consisting of the hard-

ware and software resources [web88]. Thus, the system utility programs, and various

service routines that a computer system provides can be regarded as being part of

the con�guration. In our taxonomy, a fault can be classi�ed as a con�guration if:

� a program/utility is installed in the wrong place

� a program/utility is installed with incorrect setup parameters

� a secondary storage object or a program/utility is installed with incorrect per-

mission that violates the security policy

The following examples illustrate how con�guration errors have been exploited to

compromise security.

2.2.1 Examples

The trivial �le transfer protocol (tftp) is a network utility based on the User

Datagram Protocol (UDP), and is commonly used by diskless workstations to down-

load kernel image �les from a server [Com88]. At some sites running di�erent versions

of Unix, the tftp daemon was enabled in such a way that it allowed any user on the

Internet to access any �le on the machine running tftp [CA-91a, CA-91b]. This

could result in disclosure of information and security could be compromise if sensitive

�les were read. For instance, if an intruder obtained access to the password �le it

could be used to crack passwords and gain unauthorized access to the system. The

problem occurred because tftp was not properly installed. If tftp had to be enabled,

it should have been installed such that it only had restricted access to the �le system

through the chroot command.

In Unix BSD 4.2, sendmailwas installed with the \Wizard mode" enabled [CA-90a].

The \Wizard mode" option was left over from a test sca�olding. It was included to

enable system programmers to debug the program without having to go through a



41

lengthy authentication process. If sendmail was installed with \Wizard mode" en-

abled, any user could gain access to the system by connecting to the mail port and

providing WIZ as a command. The \Wizard mode" came with a default password

of wizzywoz. By using this default password, an intruder could bypass the system

authentication procedure and gain access to the system.

2.3 Synchronization Errors

Carlstead [Car78] studied serialization errors in detail as part of the Protection

Analysis Project. Some of the ideas presented in this section are borrowed from his

results. Two operations are data related if the evaluation of conditions by one can

a�ect the other by changing the relative ordering of the operations. Two operations

are control related if a change in the relative order of execution can produce di�erent

results. Serialization is concerned with two types of relationships between opera-

tions: data ow and control ow. The purpose of serialization is to maintain the

appropriateness of the latter with the former [Car78].

In our taxonomy, a fault can be classi�ed as a synchronization error if:

� a fault can be exploited because of a timing window between two operations

� a fault results from improper serialization of operations

Synchronization errors in our taxonomy include both race condition errors (errors

that occur because of a timing window) and serialization errors (error that result from

improper serialization of operations).

2.3.1 Example

A Unix speci�c example is presented here to illustrate race condition errors. xterm

provides a window interface in the X window system. A vulnerability was found in

many versions of the xterm program, which if exploited allowed users to create and

delete arbitrary �les in the system. If xterm operated as a setuid or setgid process,



42

then a race condition between the access check permissions to the logging �le, and the

logging itself, allowed users to replace any arbitrary �le with the logging �le [CA-93a].

The following code explains how the vulnerability could be exploited.

mknod foo p # create a FIFO file and name it foo

xterm -lf foo # start logging to foo

mv foo junk # rename file foo to junk

ln -s /etc/passwd foo # create a symbolic link to password file

cat junk # open other end of FIFO

This error occurs because of a timing window that exists between the time access

permissions of the logging �le are checked and the time actual logging is started.

This timing window could be exploited by creating a symbolic link from the logging

�le to a target �le in the system. If xterm ran as setuid root, this could be used to

create new �les or destroy existing �les in the system.

2.4 Condition Validation Errors

Most operations in an operating system can be classi�ed as [Car78]:

prohibitive: an operation is allowed to proceed only if the conditions under which it

must be allowed to proceed hold, otherwise the action is aborted.

or

inhibitive: an operation is delayed until the conditions under which it can proceed

are met.

For example, access checking mechanisms are prohibitive because an action is denied

if a user/process invokes it on an object outside its access domain. Synchronization

mechanisms are inhibitive because an operation is delayed until the required condition

is satis�ed.

Conditions are usually speci�ed as a conditional construct in the implementation

language. An expression corresponding to the condition is evaluated and an execution



43

path is chosen based on the outcome of the condition. In this discussion, we assume

that an operation is allowed to proceed only if the condition evaluated to true. A

condition validation error occurs if:

� Condition is missing: This allows an operation to proceed regardless of the

outcome of the condition expression.

� Condition is incorrectly speci�ed: If a condition is incorrectly speci�ed it would

allow execution to proceed along an alternate path. This may allow an operation

to proceed regardless of the outcome of the condition expression and completely

invalidate the check.

� A predicate in the condition expression is missing: This would evaluate the

condition incorrectly and allows an alternate execution path to be chosen.

Condition errors are coding faults that occur because a programmer misunder-

stood the requirements, or made a logic error when a condition was speci�ed.

In our taxonomy, a fault is classi�ed as a condition error if one of the following

conditions is missing or not speci�ed correctly.

Check for limits: Before an operation can proceed, the system must ensure that it

can allocate the required resources without causing starvation or deadlocks. For

input/output operations, the system must also ensure that a user/process does

not read or write beyond its address boundaries.

Check for access rights: The system must ensure that a user/process can only access

an object in its access domain. The mechanics of this check depend on how

access control mechanisms are implemented.

Check for valid input: Any routines that accept input directly from a user or from

another routine must check for its validity. This includes checks for:

� Field-value correlation



44

� Syntax

� Type and number of parameters or input �elds,

� Missing input �elds or delimiters

� Extraneous input �elds or parameters

Failure to properly validate input may indirectly cause other functional modules

to fail and cause the system to behave in an unexpected manner.

Check for the origin of a subject: In this context, subject refers to a user/process,

host, and shared data objects. The system must authenticate the subject to

prevent identity compromise attacks.

Check for exceptional conditions: The system must be able to handle exceptional

conditions that arise from failure events or malfunction of a functional module

or device.

2.4.1 Examples

In Unix /etc/exports speci�es a lists of trusted remote hosts that are allowed

to mount the �le system. In SunOS 4.1.x, if a host entry in the �le was longer

than 256 characters, or if the number of hosts exceeded the cache capacity, a bu�er

overow allowed any non-trusted host to mount the �le system [CA-94]. This allowed

unauthorized users read and write access to all �les on a system. This error occurred

because the system failed to check that it had read more than 256 characters or that

it had exhausted the cache capacity.

The Unix operating system allows users to copy a �le from or to a remote ma-

chine via the rcp utility. A vulnerability was discovered in a version of Unix that

allowed remote users of a trusted machine to execute root-privilege commands via

rcp [CA-89]. This problem occurred because of an authentication error in the name

lookup protocol that binds the high level addresses used for identi�cation to Internet

Protocol (IP) addresses. This error is representative of a number of other similar



45

aws that can be exploited using a weakness in the Domain Name Service protocol

[Sch93]. The error occurred because the origin of the message (hostname) was not

authenticated.

In SunOS 4.1 and SunOS 4.1.1, any user could redirect characters away from any

other user's terminal device. The error occurred because the input/output routine

failed to properly check access rights of the user who had invoked the operation. The

�x involved adding a check to allow a read or write request to proceed only if the user

had the correct access rights and reject the request otherwise [CA-90b].

uux is a Unix utility that allows users to remotely execute a limited set of com-

mands. A aw in the parsing of the command line allowed remote users to execute

arbitrary commands on the system [Bis86]. The command line to be executed was

received by the remote system, and parsed to see if the commands in the line were

among the set of commands that could be executed. uux read the �rst word of the

line, and skipped characters until a delimiter character (;,^, |) was read. uux would

continue this way until the end of the line was read. However, two delimiters (&, `)

were missing from the set, so a command following these characters would never be

checked before being executed. For example, a user could execute any command by

executing the following sequence.

uux remote_machine ! rmail anything & command

In uux the command after & would not be checked before being executed. This

allowed users to execute unauthorized commands on a remote system. This error

occurred because uux failed to check for missing delimiters.

fsck is a program that checks and repairs �le system consistency. Some of the

inconsistencies that fsck corrects include: too-large link counts in inodes, missing

blocks in the free list, blocks appearing in the free list and also in �les, or incorrect

counts in the super block. On many Unix systems, fsck is run as part of the system

bootup procedure to correct �lesystem inconsistencies. If fsck failed during bootup

in Solaris 2.x, a privileged shell was started on the console. This enabled any user

with physical access to gain root privileges [CA-93b].



46

2.5 Environment Faults

Environment faults are introduced when speci�cations are translated to code but

su�cient attention is not paid to the run-time environment [Spa90]. These faults are

dependent on the operational environment and result when software is executed in a

di�erent environment than the programmer had in mind.

Some typical examples of environmental faults include [Spa90]:

� the value used to initialize \uninitialized" pages or segments of virtual memory

may introduce unsuspected problems

� interpertation of supposed constant values may produce faults, such as porting

code that deferences a constant pointer

� exception handling and reporting may be di�erent than expected

� system errors: a compiler may produce incorrect code, the hardware may ex-

ecute instructions di�erently than expected under some circumstance, and the

operating system may introduce intermittent errors not related to the user code

Environment faults can also occur when di�erent modules interact in an unantic-

ipated manner. Independently the modules may function according to speci�cations

but an error occurs when they are subjected to a speci�c set of input in a particular

execution environment.

2.5.1 Example

The exec system call overlays a new process image over an old one. The new image

is constructed from an executable object �le or a data �le containing commands for

an interpreter. When an interpreter �le is exec'd, the arguments speci�ed in the exec

call are passed to the interpreter. Most interpreters take \-i" as an argument to start

an interactive shell.

In SunOS version 3.2 and earlier, any user could create an interactive shell by

creating a link with the name \-i" to a setuid shell script. exec passed \-i" as an



47

argument to the shell interpreter that started an interactive shell. Both the exec

system call and the shell interpreter worked according to speci�cations. The error

resulted from an interaction between the shell interpreter and the exec call that had

not been considered.

2.6 Selection Criteria

In this section we describe the selection criteria that can be used to decide mem-

bership of security faults into di�erent categories. The motivation is to avoid any

ambiguities and distinctly classify each fault.

For each fault category, we present a series of questions that are used to determine

membership in a speci�c category. An answer in the a�rmative to a question in that

series quali�es the fault to be classi�ed in the corresponding category. We assume

that su�cient details about the faults are known.

Condition Validation Errors

The following sets of questions can be used to determine if a fault can be classi�ed

as condition validation error.

Boundary Condition Errors

� Did the error occur when a process attempted to read or write beyond a valid

address boundary?

� Did the error occur when a system resource was exhausted?

� Did the error result from an overow of a static-sized data structure?

Access Validation Errors

� Did the error occur when a subject invoked an operation on an object outside

its access domain?



48

� Did the error occur as a result of reading or writing to/from a �le or device

outside a subject's access domain?

Origin Validation Errors

� Did the error result when an object accepted input from an unauthorized sub-

ject?

� Did the error result because the system failed to properly or completely authen-

ticate a subject?

Input Validation Errors

� Did the error occur because a program failed to parse syntactically incorrect

input?

� Did the error result when a module accepted extraneous input �elds?

� Did the error result when a module did not handle missing input �elds?

� Did the error result because of a �eld-value correlation error?

Failure to Handle Exceptional Conditions

� Did the error because the system failed to handle an exceptional condition,

generated by a functional module, device, or user input?

Synchronization Errors

This section presents the criteria that can be used to decide if a fault can be

classi�ed as a synchronization error.

Race Condition Errors

� Is the error exploited during a timing window between two operations?



49

Serialization Errors

� Did the error result from inadequate or improper serialization of operations?

Environment Errors

This section presents a series of questions that be used to decide if a fault can can

be classi�ed as an environment error.

� Does the error result from an interaction in a speci�c environment between

functionally correct modules?

� Does the error occur only when a program is executed on a speci�c machine,

under a particular con�guration?

� Does the error occur because the operational environment is di�erent from that

the software was designed for?

Con�guration Errors

The following questions can be used to determine if a fault can be classi�ed as a

con�guration error.

� Did the error result because a system utility was installed with incorrect setup

parameters?

� Did the error occur by exploiting a system utility that was installed in the wrong

place?

� Did the error occur because access permissions were incorrectly set on a utility

such that it violated the security policy?

Figure 2.2 shows a pictorial representation of the decision tree derived from ques-

tions used for deciding membership for faults. The internal nodes of the decision tree

represent the series of questions that are used for each category. The leaf nodes in the



50

tree represent the di�erent fault categories. The decision tree shows two nodes that

are labeled unclassi�able errors. These nodes represent a catch-all category for the

coding, operational, and environment faults. The unclassi�able error categories are

included in our classi�cation scheme to account for new faults that cannot be readily

classi�ed using our existing criteria. The new fault category and the associated crite-

ria can be added as a parent node of the unclassi�able error node. The ability to add

new fault categories can be useful if the taxonomy is extended to di�erent operating

systems that have di�erent structures.



51

coding fault Y
N

boundary
condition 
error

N

Y

access 
validation 
error Y

origin
validation
error

N

input validation
error

Y

N

N

serialization
error

unclassifiable
error

N

race
condition
error

synchronization
error

synchronization
error

Y

Y

N

unclassifiable
error

configuration
error

configuration
error

configuration
error

configuration
error

setup
parameters

access
permissions

installed in
wrong place

policy
error

N

N

N

N

Y

Y

Y

Y

environment
error

operational
environment
dependent fault

N

Y

Y

failure
to handle
 exceptions

N Y

condition
validation
error

condition
validation
error

condition
validation
error

condition
validation
error

condition
validation
error

Figure 2.2 Selection Criteria for Fault Classi�cation



52

3. DESIGN OF THE VULNERABILITY DATABASE

In this chapter we present the conceptual design of a vulnerability database. The

vulnerability database can be used to organize information about security faults based

on our taxonomy. This chapter discusses the various design issues and the rational

behind the design choices. The design of the database is presented in terms of re-

lational model entities and relational algebra functions. This approach is used to

separate the implementation details from the abstract design.

3.1 Motivation

Landwehr et al.[L+93] observe that the history of software failure has been mostly

undocumented and knowing how systems have failed can help us design better systems

that are less prone to failure. The design of this vulnerability database is one step in

that direction. The database can serve as a repository of vulnerability information

collected from di�erent sources. This information can be organized to allow useful

queries to be performed on the data. The information in the database can be useful to

the system designer in identifying areas of weaknesses in the design, requirements, or

implementation. Personnel involved with testing security mechanisms of an operating

system may also �nd the information to be useful. The database also demonstrates

that our taxonomy can be applied to classify actual vulnerabilities from di�erent

versions of Unix.

Our database can also be used to maintain vendor patch information, vendor

and response team advisories, and catalog the patches applied in response to those

advisories. This information can be helpful to system administrators maintaining a

legacy system.



53

3.2 Entity Relation Model

As part of the conceptual design process, an entity relation model is often used to

illustrate the relationships between the di�erent entities in the database model. An

entity is a basic object in the entity relation model with an independent existence in

the real world [EN89]. An entity can either have a physical or a conceptual existence.

Based on the queries collected in the requirements analysis phase, the following

three entities were identi�ed.

Vulnerability: The vulnerability entity type corresponds to the description of a

potential security aw in the operating system.

Operating system: The operating system entity type corresponds to the operating

system that contains a particular vulnerability.

Patch Info: Patch info is a conceptual entity that provides information about patches

that were applied to a system and the vulnerabilities they �x.

3.3 Entity Attributes

An attribute is a particular property possessed by an entity. Associated with an

attribute is a value, which is the information stored in that attribute. Attributes can

be either single valued or multi-valued. The single valued attributes are associated

with the value set, which speci�es the domain of values that may be assigned to the

attribute.

The attributes associated with the three entity types are outlined below. We have

also included a brief description, and the value set of the attribute.



54

Attribute Description Value Set

Name/identi�cation

number

Unique identi�cation (pri-

mary key)

string

Source Where the vulnerability was

reported

string

Description A brief description of how it

was or could have been ex-

ploited

text

Detection technique A brief description of the

testing strategy that can be

used to detect this vulnera-

bility

text

Classi�cation Representative category in

the taxonomy

string

Work around Any known work-arounds text

Description of �x A description of how the vul-

nerability was �xed

text

Literature Any reference to the vulner-

ability

text

Consequence A generic consequence class string

Table 3.1 Vulnerability Entity Attributes



55

Attribute Description Value Set

System name Unique name of the operat-

ing system (primary key)

string

Family of system Family of the system e.g.

Unix

string

Vendor Vendor's name and address

if available

string

Table 3.2 Operating System Entity Attributes

Attribute Description Value Set

Patch number Unique patch number (pri-

mary key)

string

Description A brief description of the

patch

string

Fixes vulnerability Vulnerability/vulnerabilities

�xed by this patch

text

Table 3.3 Patch Info Attributes



56

3.3.1 Entity Relation Diagram

The entity-relation diagram (Figure 3.1) shows two M:N relationships that exist

between the entities in the database. These relationships cannot be easily represented

in the hierarchical or the network model without replication of data records. As the

amount of stored information in the vulnerability database can be large, we opted for

the relational model minimize data replication. Each M:N relationship is represented

by an additional relation that contains the primary keys of the entities on both sides.



57

operating system

name family

patch info

   
contains
patches

patch num. description

vulnerability

id, number source description

detection
technique

work 
around

classification

contains
vulnerability results

in

consequence

class

1

N

M

N

M N

vendor

description
   of  fix

 references
 in literature

fixes
vulnerability

Entity

Attribute

Key Attribute

E1 E2

1 N

Cardinality Ratio

Legend

Figure 3.1 Entity Relation Diagram



58

The following schema are derived from the entity-relation diagram and show the

di�erent attributes. The primary key attributes of the schema are underlined.

Operating System Schema

family vendorname

Vulnerability Schema

vulner
id

source description detection
technique classification work

around
description
of fix

references
in literature

consequence

Patch Info Schema

patch number description fixes vulnerability

Contains patch Schema

operating system
name

patch number

Contains vulnerability Schema

operating system
name 

vulnerability
id

3.3.2 Entity Integrity Constraints

The entity integrity constraints state that primary keys used to uniquely identify a

tuple in a relation should not be null. Entity integrity constraints should be enforced

on all update, add, and modify operations.

3.3.3 Referential Integrity Constraints

Referential integrity constraints are speci�ed between two relations and are used

to maintain consistency between the tuples. Referential integrity constraints should

be maintained on add, delete, and modify operations. The referential integrity con-

straints in our vulnerability database are diagrammatically depicted in Figure 3.2.



59

Contains_patch

operating system
      name 

patch number

Contains_vulnerability

operating system
name 

vulnerability
  id

Operating system

name family vendor

   patch number

Patch info

   description
fixes 

vulnerability

vulner
id

source description detection
technique

classification work
around

description
of fix

references
in literature

conseqeunce

Vulnerability

Figure 3.2 Referential Integrity Constraints

3.4 Operation on the Relations

Relational Algebra is a collection of operations that are used to manipulate entire

relations. It includes operations to select tuples from individual relations, and to com-

bine related tuples from several relations for the purpose of specifying a query. The

complete set of relational operations consists of select, project, union, differ-

ence, Cartesian product. Any other relational operation can be performed as a

combination of these �ve operations[EN89]. These operations are briey described in

Table 3.4.

In the following sections we present the implementation details of the vulnerability

database prototype.

The prototype was developed to demonstrate that vulnerabilities from di�erent

versions of Unix can be classi�ed in our taxonomy of faults.



60

The three major components of the vulnerability database are:

� Database kernel

� Vulnerability database interface

� User-interface

Each of the three components are discussed in detail in the following sections.

The information and data ow information between the three components is shown

in Figure 3.7.

Database Kernel

Physical Schema

Vulnerability
Database Interface

User Interface

Figure 3.3 Vulnerability Database



61

3.5 Requirements Analysis

As part of the requirements analysis, we identi�ed two major uses for the vulner-

ability database. It can be used to maintain up-to-date security related information

about di�erent operating systems that can be helpful to system designers and re-

searchers. Also, the vulnerability information can be used during security assessment

studies of operating systems. In the second phase of requirements analysis, we asked

several people involved with security-related projects to comment on a small set of

queries we had proposed. We asked them to supplement the list with any additional

queries that may be performed on the database. We then constructed a small but

comprehensive set of queries that encompass a wide range of attributes. The collec-

tion of queries helped us identify the information that should be included in di�erent

attributes of the data objects.

Although the collection of vulnerabilities provided useful information, some of

the queries were discarded and the attributes they accessed are not included in the

database. For example, a query about the time that a vulnerability was introduced

into the system cannot be answered by using the stored information. Similarly, queries

about programming practices are not supported. Such queries cannot be answered

without access to program source code, program requirements, functional speci�ca-

tions and knowledge of the program development environment. Furthermore, such

queries are di�cult to answer because they require a qualitative evaluation of infor-

mation.

The set of queries that can be supported in the initial prototype of the database

is shown below.



62

1. List all the vulnerabilities in system X.

2. List all vulnerabilities in system X that occur because of Y (e.g. race condition)

3. List all vulnerabilities which result in Z (e.g. denial of service)

4. Perform any combination of boolean operations on 3 and 2. e.g.: Y ^Z; Y _ Z;

Y ^ (:Z)

5. Given vulnerability V, classify it.

6. Given vulnerability V, �nd all systems that have this vulnerability.

7. List all vulnerabilities in system X that will result in Z.

8. List all systems that have a vulnerability that will cause Z.

9. Given vulnerability V and system X, what were (or could have been) the con-

sequence if exploited.

10. Give a brief description of how V was (could have been) exploited.

11. List any reference to vulnerability V in the literature.

12. Give a description of the �x for vulnerability V.

13. List all patches applied to system X.

14. For a vulnerability V, are there any practical work-arounds?

15. For system X, version Y, what vulnerabilities have no supported patch?

16. For all systems that have a vulnerability V, list their version numbers, and

vendors.

17. List any references to V in the literature.



63

Some queries collected during requirements analysis are not supported because they

require a qualitative analysis of the data. For completeness, these queries are also

shown below.

1. Given vulnerability V and system X, which part of the operating system was it

found in?

2. Does patch P completely �x a given vulnerability?

3. What is the level of di�culty/expertise required to patch vulnerability V?

4. What is the initial access/setup required to exploit vulnerability V (e.g., requires

a user account, requires access to port P)?

5. Given a coding practice, list all vulnerabilities resulting from this coding prac-

tice?

6. Given V, how could have it been prevented?

7. For a class of vulnerability C, which software engineering practice P would have

prevented the introduction of this vulnerability?

3.6 Design Issues

The two major factors that inuenced the design of our database were scalability

and ease of maintaining the integrity of information.

A poor design that did not scale could lead to degradation of performance, waste

storage space and create problems in maintenance. Even though performance was not

a critical factor in the design, we keep a response time for the queries. We paid partic-

ular attention to ensure that little or no data replication took place. Our initial design

was based on a hierarchical model, but the M:N relationships between the di�erent

entities could not be modeled without data replication. At that point, a relational

schema was adopted that facilitated the representation of the M:N relationships with

less data replication.



64

Maintenance of a large repository of information is a di�cult task and it is not

clear if any particular organization scheme can make it any easier. We have identi�ed

entity integrity constraints as well as referential integrity constraints that should be

helpful to maintain the integrity of the stored information.

3.7 Database Kernel

Our vulnerability database is based on a relational schema model that consists

of both physical and conceptual entities. These entities are represented as relations

(tables) in the model. Relational algebra de�nes the operations that can be performed

on the the relations. It also de�nes a set of basis functions such that any query in

the relational model can be speci�ed only in terms of these functions. The basis

functions in the relational model are: select, project, union, difference, and

cartesian product.

The vulnerability database kernel is comprised of the �ve basis functions that

directly operate on the physical schema. In addition, it also contains the following

functions:

Create: Creates a new relation in the database.

Modify: Modify all the �elds of a tuple in a relation.

Update: Change a speci�ed �eld of a tuple in a relation.

Delete: Delete a tuple from a relation.

Destroy: Remove a relation from the database.

The kernel also provides a layer of abstraction to the upper level layers, which do

not directly interface with the physical schema. This enables us to restrict details of

the physical schema to the kernel functions.



65

3.7.1 Representation of Relations

In the vulnerability database, each relation is contained in a separate �le. Each

tuple in the relation is represented as a line of text, where the di�erent �elds are

separated by a colon. An instance of the operating system relation is shown below.

os1:un*x:some vendor

os2:x*n:vendor 2

3.8 Vulnerability Database Interface

The database provides an interface to the physical schema through a set of kernel

functions. All of the queries listed in Section 3.13 can be speci�ed using only the

kernel functions. However, this approach has two disadvantages. First, the underlying

details of the physical schema are exposed to the user. Second, specifying the queries

only in terms of the kernel functions becomes cumbersome and exposes details of

the physical schema. As an alternative, a separate layer of abstraction called the

vulnerability database interface is provided. This layer provides a set of form-based

queries that interact with the kernel functions. The set of queries currently supported

in the vulnerability database layer of the prototype are listed in Table 3.6.



66

Query Interface Function

List all the vulnerabilities in system X. list vulnerability < system >

List all vulnerabilities in system X that oc-

cur because of Y.

vulner conseq

< vulner >< system >

List all vulnerabilities which result in Z. list conseq < conseq >

Given vulnerability V, classify it. classify < vulner >

Given vulnerability V, �nd all systems that

have this vulnerability.

�nd system < vulner >

List all vulnerabilities in systemX that will

result in Y.

vulner result

< system >< conseq >

List all systems which have a vulnerability

that will cause Y.

list systems < systems >

Given vulnerability V and system X, what

were (or could have been) the consequence

if exploited.

conseq < vulner >< system >

Give a brief description of how V was

(could have been) exploited.

exploit < vulner >

List any reference to V in the literature. descr �x < vulner >

Give a description of the �x . literature < vulner >

List all patches applied to system X. patches to < system >

For a vulnerability V, are there any prac-

tical work-arounds?

work-around < vulner >

For system X, version Y, what vulnerabil-

ities have no supported patch?

nopatch < system >

For all systems that have a vulnerability

V, list their vendors.

sysinfo < vulner >

Table 3.5 Vulnerability Database Interface Functions



67

3.9 User Interface

A user can interact with our database either by using command line arguments

or through a graphical user interface. The graphical interface was written using

the Tk toolkit [Ous94] and provides a exible interface to the vulnerability database

functions. All of the functions listed in Table 3.6 can be invoked through the interface.

Figure 3.8 shows the main commands screen that shows all the functions that

can be invoked. After a function has been selected, it may be invoked using the run

button. This presents another window with entry �elds for the needed arguments.

Figure 3.9 shows the dialogue window for the vulner conseq function. It shows the

entry �elds for the two needed arguments. A template representation for the input

�elds was chosen so that a user would not need to remember the order or number

of arguments required by each function. A user can also obtain a help window for

a selected function by using the help command in the main screen. The help screen

contains a brief description of the function, the arguments required and the usage

syntax. Figure 3.10 shows a help screen for the vulner conseq function.



68

Operation Description Notation

select Select all tuples that satisfy the

selection condition from a rela-

tion R.

select < selection condition >

R

Project Produce a new relation with only

some of the attribute of R and

remove duplicate tuples

project <attribute list > R

union Produce a new relation that in-

cludes all tuples in R1 or R2 or

both R1 and R2; R1 and R2 must

be union compatible

R1 union R2

difference Produce a relation that includes

all the tuples in R1 that are not

in R2

R1 difference R2

cartesian

product

Produce a relation that has the

attributes of R1 and R2 and in-

cludes as tuples all possible com-

binations of tuples from R1 and

R2

R1 cartesian product R2

Table 3.4 Operations on Relations



69

F
ig
u
re
3.
4
V
u
ln
er
ab
il
it
y
D
at
ab
as
e
C
om
m
an
d
s
S
cr
ee
n



70

Figure 3.5 Function Interface

Figure 3.6 Help Window

3.10 Integrity Constraints

In a relational database, entity and referential integrity constraints must be main-

tained when creating, modifying or updating relations to maintain the integrity of



71

stored information. The referential and entity integrity constraints in the vulnera-

bility database were discussed in section 3.3.2 and 3.3.3. This section describes how

these constraints are implemented in the database.

3.10.1 Entity Integrity Constraints

Entity integrity constraints specify that the primary key of a relation, which is

used to uniquely identify a tuple, is always de�ned. In the vulnerability database,

entity integrity constraints are explicitly speci�ed in the \integrity.conf" �le. The

format of entries in the �les is as shown below:

vulner:vulner_id

contains_vulner:os:vulner_id

os:name

contains_patch:os:patch_number

patch_info:patch_number

The name of the relation is followed by the �elds that serve as the primary key(s).

This format allows more than one key to be speci�ed in the integrity check and allows

the maintainer to change the keys if desired. The entity integrity check can be invoked

every time a relation is created, modi�ed, or when a tuple is modi�ed or deleted from

the relation.

The primary keys that are used in the database are:

vulnerability number: For vulnerabilities obtained from a response team, the pri-

mary key is the same as the unique identi�er used by a response team to ad-

vertise the vulnerability. For other vulnerabilities a unique number is assigned

to each vulnerability tuple.

operating system name: The primary key for the operating system entity is formed

by concatenating the name of the operating system to its version number. This

�eld serves as a unique identi�er and also implicitly stores the version number.



72

patch number: Patch number is the same unique key used by vendors to identify a

distributed patch.

3.10.2 Referential Integrity Constraints

Referential integrity constraints are speci�ed between tuples of two relations to

maintain consistency among the tuples. In the vulnerability database, referential

integrity constraints are explicitly speci�ed in the \chk.conf" �le. The tuples that

have referential integrity constraints are speci�ed as:

relation1:fieldA ==> relation2:fieldB

In the instance shown, fieldA in relation1 speci�es a referential integrity constraint

on fieldB in relation2. Any changes to fieldB in relation2 should be reected

in fieldA in relation1. Referential integrity checks should be invoked when tuples

in the relations are modi�ed, deleted, or updated.

3.11 Template Representation

The vulnerability database provides exibility to change �elds in the tuples con-

tained in the relations, or to change the integrity constraints through an editable tem-

plate representation. The di�erent �elds of the tuples are speci�ed in the \db.conf"

�le using a format shown below.

#vulnerability#: id: source: classification

The example above shows a relation \vulnerability" that consists of three �elds: \id",

\source", and \classi�cation".

The templates in \db.conf" are used by the database kernel routines when new

tuples are added, modi�ed, or updated. A template representation allows the main-

tainer of the database to easily add or delete �elds from the tuples. The changes are

then reected in any subsequent Create, Modify, or Update operations.



73

Integrity constraints in the vulnerability database are also speci�ed as editable

templates. This also allows maintainers to change primary keys, add new keys, or

change referential integrity constraints by simply editing the templates in the integrity

con�guration �les.

3.12 Data Sources

We have started populating the vulnerability database with attacks that led to

a security compromise. The information was gathered from advisories issued by the

Computer Emergency Response Team (CERT), information reported on an electronic

security mailing list, and a survey of the literature. At present the database contains

information on fourty nine known vulnerabilities. These vulnerabilities have been cat-

egorized based on our taxonomy, and include descriptions of how each was exploited,

and the operating systems that it was found in.

In the following sections we present the implementation details of the vulnerability

database prototype.

The prototype was developed to demonstrate that vulnerabilities from di�erent

versions of Unix can be classi�ed in our taxonomy of faults.

The three major components of the vulnerability database are:

� Database kernel

� Vulnerability database interface

� User-interface

Each of the three components are discussed in detail in the following sections.

The information and data ow information between the three components is shown

in Figure 3.7.



74

Database Kernel

Physical Schema

Vulnerability
Database Interface

User Interface

Figure 3.7 Vulnerability Database

3.13 Requirements Analysis

As part of the requirements analysis, we identi�ed two major uses for the vulner-

ability database. It can be used to maintain up-to-date security related information

about di�erent operating systems that can be helpful to system designers and re-

searchers. Also, the vulnerability information can be used during security assessment

studies of operating systems. In the second phase of requirements analysis, we asked

several people involved with security-related projects to comment on a small set of

queries we had proposed. We asked them to supplement the list with any additional

queries that may be performed on the database. We then constructed a small but



75

comprehensive set of queries that encompass a wide range of attributes. The collec-

tion of queries helped us identify the information that should be included in di�erent

attributes of the data objects.

Although the collection of vulnerabilities provided useful information, some of

the queries were discarded and the attributes they accessed are not included in the

database. For example, a query about the time that a vulnerability was introduced

into the system cannot be answered by using the stored information. Similarly, queries

about programming practices are not supported. Such queries cannot be answered

without access to program source code, program requirements, functional speci�ca-

tions and knowledge of the program development environment. Furthermore, such

queries are di�cult to answer because they require a qualitative evaluation of infor-

mation.

The set of queries that can be supported in the initial prototype of the database

is shown below.



76

1. List all the vulnerabilities in system X.

2. List all vulnerabilities in system X that occur because of Y (e.g. race condition)

3. List all vulnerabilities which result in Z (e.g. denial of service)

4. Perform any combination of boolean operations on 3 and 2. e.g.: Y ^Z; Y _ Z;

Y ^ (:Z)

5. Given vulnerability V, classify it.

6. Given vulnerability V, �nd all systems that have this vulnerability.

7. List all vulnerabilities in system X that will result in Z.

8. List all systems that have a vulnerability that will cause Z.

9. Given vulnerability V and system X, what were (or could have been) the con-

sequence if exploited.

10. Give a brief description of how V was (could have been) exploited.

11. List any reference to vulnerability V in the literature.

12. Give a description of the �x for vulnerability V.

13. List all patches applied to system X.

14. For a vulnerability V, are there any practical work-arounds?

15. For system X, version Y, what vulnerabilities have no supported patch?

16. For all systems that have a vulnerability V, list their version numbers, and

vendors.

17. List any references to V in the literature.



77

Some queries collected during requirements analysis are not supported because they

require a qualitative analysis of the data. For completeness, these queries are also

shown below.

1. Given vulnerability V and system X, which part of the operating system was it

found in?

2. Does patch P completely �x a given vulnerability?

3. What is the level of di�culty/expertise required to patch vulnerability V?

4. What is the initial access/setup required to exploit vulnerability V (e.g., requires

a user account, requires access to port P)?

5. Given a coding practice, list all vulnerabilities resulting from this coding prac-

tice?

6. Given V, how could have it been prevented?

7. For a class of vulnerability C, which software engineering practice P would have

prevented the introduction of this vulnerability?

3.14 Design Issues

The two major factors that inuenced the design of our database were scalability

and ease of maintaining the integrity of information.

A poor design that did not scale could lead to degradation of performance, waste

storage space and create problems in maintenance. Even though performance was not

a critical factor in the design, we keep a response time for the queries. We paid partic-

ular attention to ensure that little or no data replication took place. Our initial design

was based on a hierarchical model, but the M:N relationships between the di�erent

entities could not be modeled without data replication. At that point, a relational

schema was adopted that facilitated the representation of the M:N relationships with

less data replication.



78

Maintenance of a large repository of information is a di�cult task and it is not

clear if any particular organization scheme can make it any easier. We have identi�ed

entity integrity constraints as well as referential integrity constraints that should be

helpful to maintain the integrity of the stored information.

3.15 Database Kernel

Our vulnerability database is based on a relational schema model that consists

of both physical and conceptual entities. These entities are represented as relations

(tables) in the model. Relational algebra de�nes the operations that can be performed

on the the relations. It also de�nes a set of basis functions such that any query in

the relational model can be speci�ed only in terms of these functions. The basis

functions in the relational model are: select, project, union, difference, and

cartesian product.

The vulnerability database kernel is comprised of the �ve basis functions that

directly operate on the physical schema. In addition, it also contains the following

functions:

Create: Creates a new relation in the database.

Modify: Modify all the �elds of a tuple in a relation.

Update: Change a speci�ed �eld of a tuple in a relation.

Delete: Delete a tuple from a relation.

Destroy: Remove a relation from the database.

The kernel also provides a layer of abstraction to the upper level layers, which do

not directly interface with the physical schema. This enables us to restrict details of

the physical schema to the kernel functions.



79

3.15.1 Representation of Relations

In the vulnerability database, each relation is contained in a separate �le. Each

tuple in the relation is represented as a line of text, where the di�erent �elds are

separated by a colon. An instance of the operating system relation is shown below.

os1:un*x:some vendor

os2:x*n:vendor 2

3.16 Vulnerability Database Interface

The database provides an interface to the physical schema through a set of kernel

functions. All of the queries listed in Section 3.13 can be speci�ed using only the

kernel functions. However, this approach has two disadvantages. First, the underlying

details of the physical schema are exposed to the user. Second, specifying the queries

only in terms of the kernel functions becomes cumbersome and exposes details of

the physical schema. As an alternative, a separate layer of abstraction called the

vulnerability database interface is provided. This layer provides a set of form-based

queries that interact with the kernel functions. The set of queries currently supported

in the vulnerability database layer of the prototype are listed in Table 3.6.



80

Query Interface Function

List all the vulnerabilities in system X. list vulnerability < system >

List all vulnerabilities in system X that oc-

cur because of Y.

vulner conseq

< vulner >< system >

List all vulnerabilities which result in Z. list conseq < conseq >

Given vulnerability V, classify it. classify < vulner >

Given vulnerability V, �nd all systems that

have this vulnerability.

�nd system < vulner >

List all vulnerabilities in systemX that will

result in Y.

vulner result

< system >< conseq >

List all systems which have a vulnerability

that will cause Y.

list systems < systems >

Given vulnerability V and system X, what

were (or could have been) the consequence

if exploited.

conseq < vulner >< system >

Give a brief description of how V was

(could have been) exploited.

exploit < vulner >

List any reference to V in the literature. descr �x < vulner >

Give a description of the �x . literature < vulner >

List all patches applied to system X. patches to < system >

For a vulnerability V, are there any prac-

tical work-arounds?

work-around < vulner >

For system X, version Y, what vulnerabil-

ities have no supported patch?

nopatch < system >

For all systems that have a vulnerability

V, list their vendors.

sysinfo < vulner >

Table 3.6 Vulnerability Database Interface Functions



81

3.17 User Interface

A user can interact with our database either by using command line arguments

or through a graphical user interface. The graphical interface was written using

the Tk toolkit [Ous94] and provides a exible interface to the vulnerability database

functions. All of the functions listed in Table 3.6 can be invoked through the interface.

Figure 3.8 shows the main commands screen that shows all the functions that

can be invoked. After a function has been selected, it may be invoked using the run

button. This presents another window with entry �elds for the needed arguments.

Figure 3.9 shows the dialogue window for the vulner conseq function. It shows the

entry �elds for the two needed arguments. A template representation for the input

�elds was chosen so that a user would not need to remember the order or number

of arguments required by each function. A user can also obtain a help window for

a selected function by using the help command in the main screen. The help screen

contains a brief description of the function, the arguments required and the usage

syntax. Figure 3.10 shows a help screen for the vulner conseq function.



82

F
ig
u
re
3.
8
V
u
ln
er
ab
il
it
y
D
at
ab
as
e
C
om
m
an
d
s
S
cr
ee
n



83

Figure 3.9 Function Interface

Figure 3.10 Help Window

3.18 Integrity Constraints

In a relational database, entity and referential integrity constraints must be main-

tained when creating, modifying or updating relations to maintain the integrity of



84

stored information. The referential and entity integrity constraints in the vulnera-

bility database were discussed in section 3.3.2 and 3.3.3. This section describes how

these constraints are implemented in the database.

3.18.1 Entity Integrity Constraints

Entity integrity constraints specify that the primary key of a relation, which is

used to uniquely identify a tuple, is always de�ned. In the vulnerability database,

entity integrity constraints are explicitly speci�ed in the \integrity.conf" �le. The

format of entries in the �les is as shown below:

vulner:vulner_id

contains_vulner:os:vulner_id

os:name

contains_patch:os:patch_number

patch_info:patch_number

The name of the relation is followed by the �elds that serve as the primary key(s).

This format allows more than one key to be speci�ed in the integrity check and allows

the maintainer to change the keys if desired. The entity integrity check can be invoked

every time a relation is created, modi�ed, or when a tuple is modi�ed or deleted from

the relation.

The primary keys that are used in the database are:

vulnerability number: For vulnerabilities obtained from a response team, the pri-

mary key is the same as the unique identi�er used by a response team to ad-

vertise the vulnerability. For other vulnerabilities a unique number is assigned

to each vulnerability tuple.

operating system name: The primary key for the operating system entity is formed

by concatenating the name of the operating system to its version number. This

�eld serves as a unique identi�er and also implicitly stores the version number.



85

patch number: Patch number is the same unique key used by vendors to identify a

distributed patch.

3.18.2 Referential Integrity Constraints

Referential integrity constraints are speci�ed between tuples of two relations to

maintain consistency among the tuples. In the vulnerability database, referential

integrity constraints are explicitly speci�ed in the \chk.conf" �le. The tuples that

have referential integrity constraints are speci�ed as:

relation1:fieldA ==> relation2:fieldB

In the instance shown, fieldA in relation1 speci�es a referential integrity constraint

on fieldB in relation2. Any changes to fieldB in relation2 should be reected

in fieldA in relation1. Referential integrity checks should be invoked when tuples

in the relations are modi�ed, deleted, or updated.

3.19 Template Representation

The vulnerability database provides exibility to change �elds in the tuples con-

tained in the relations, or to change the integrity constraints through an editable tem-

plate representation. The di�erent �elds of the tuples are speci�ed in the \db.conf"

�le using a format shown below.

#vulnerability#: id: source: classification

The example above shows a relation \vulnerability" that consists of three �elds: \id",

\source", and \classi�cation".

The templates in \db.conf" are used by the database kernel routines when new

tuples are added, modi�ed, or updated. A template representation allows the main-

tainer of the database to easily add or delete �elds from the tuples. The changes are

then reected in any subsequent Create, Modify, or Update operations.



86

Integrity constraints in the vulnerability database are also speci�ed as editable

templates. This also allows maintainers to change primary keys, add new keys, or

change referential integrity constraints by simply editing the templates in the integrity

con�guration �les.

3.20 Data Sources

We have started populating the vulnerability database with attacks that led to

a security compromise. The information was gathered from advisories issued by the

Computer Emergency Response Team (CERT), information reported on an electronic

security mailing list, and a survey of the literature. At present the database contains

information on fourty nine known vulnerabilities. These vulnerabilities have been cat-

egorized based on our taxonomy, and include descriptions of how each was exploited,

and the operating systems that it was found in.



87

4. SECURITY FAULT DETECTION TECHNIQUES

In Chapter 2 we discussed a classi�cation scheme for security faults in Unix. The

motivation behind the classi�cation was to classify faults unambiguously into di�erent

categories and use them for data organization. The fault categories were used as the

basis for data organization in the design of a vulnerability database. The design and

implementation of the database was discussed in Chapter 3. As another application

of our fault classi�cation scheme, we have also identi�ed software testing techniques

that may be used to detect faults in each category.

In our taxonomy of faults, errors that share a common characteristic are classi�ed

in the same category. For example, synchronization errors share a common method

of exploitation: the relative ordering of an operation sequence can be used to breach

security. Faults in the condition validation category result from missing or incomplete

condition checks. Con�guration errors are operational faults that occur when software

is adapted to a new environment after it has been developed. Environmental errors

are operational dependent faults that manifest themselves when software is executed

in a particular execution environment.

In the following sections we present a brief description of di�erent software test-

ing techniques. In Sections 4.6 through 4.9, we present a synthesis of these testing

techniques and discuss their application to security faults.

4.1 Static Analysis

Static analysis techniques do not require execution of the software. These tech-

niques rely on inspection of requirements and design documents, code walk-throughs,

and formal methods of veri�cation to detect coding errors in a program [DMMP87].



88

Static analysis may be performed manually or the process can be automated by using

an analysis tool.

A major limitation of static analysis involves array references and pointer variables

as the values referenced cannot be distinguished [DM91]. Experimental evaluation

of code inspections and walk-throughs have shown these methods to be e�ective in

�nding 30% to 70% of logic design and coding errors in typical programs [Mye79].

Various static analysis techniques such as code walk-throughs, inspection of design

and speci�cation documents, and formal methods of veri�cation were also used in the

design of secure operating systems [MD79, PKKe79]. These systems provided prova-

ble security and were formally demonstrated to conform to the security requirements.

4.2 Symbolic Testing

In symbolic testing of programs, input data and output values are assigned sym-

bolic values, that may be elementary symbolic values or expressions [DMMP87]. The

possible executions of a program are characterized by an execution tree. The exe-

cution of a program during symbolic testing is performed by a symbolic evaluator

that consists of an expression simpli�er and a symbolic interpreter. Symbolic testing

has been used in several symbolic evaluation and program proof systems. Howden

[How78] studied the e�ectiveness of symbolic testing and reported that �fteen out

of twenty two errors reported in a program may possibly be detected by symbolic

testing.

Symbolic testing can be used to prove the correctness of a program. If a program

under test is viewed as a �nite set of assertion-to-assertion paths, the program is

shown to be correct if each path is correct [DMMP87]. Symbolic testing has problems

if a program contains loops or array variables. The limitations of symbolic testing

because of loops and array variables does not present itself as an attractive choice to

test complex operating system source code.



89

4.3 Path Analysis and Testing

Path analysis testing involves the selection of test data cases to execute chosen

paths [DMMP87]. A test case is constructed by choosing one test point from each

execution path of the program. This approach exercises all the possible paths through

a program at least once. But practical and economical limitations restrict path testing

to choosing only a subset of all possible paths. Path testing is meant to detect

computation, path selection, and missing path errors [How76]. A computation error

occurs when a computation statement along a path is computed incorrectly. A path

selection error occurs when the predicates in a conditional construct are incorrect.

Missing path errors result from missing predicates in the condition construct. Path

analysis testing can be used in conjunction with domain analysis to design test cases.

Domain testing is intended to detect path selection errors on or near the boundary

of a path domain [DM91].

Control structure testing is a path coverage testing technique that exercises all the

possible outcomes of a condition construct. Control structure testing is divided into

condition testing, data ow testing, and loop testing. Condition testing focuses on the

condition expressions in a program. Data ow testing selects paths of the program

according to the use and de�nition of variables. Loop testing focuses exclusively on

the validity of loop constructs in a program. We will explore condition testing in

more detail and present it as a possible detection technique for condition validation

errors. Condition testing is further re�ned into the following types of testing.

Branch Testing: Branch testing is the simplest control testing technique and involves

evaluating the true and false branch of every conditional branch at least once

[Mye79].

Branch and Relational Operator Testing (BRO): Branch and relational operator test-

ing guarantees the detection of branch and relational operator errors in a condi-

tion provided that all boolean variables and relational operators in the condition

occur only once and have no common variables [Tai89]. BRO uses condition



90

constraints on a simple condition. A condition C has constraints (D1, D2, : : : ,

Dn) where Di is a symbol specifying a constraint on the outcome of the ith

simple condition in C. A condition constraint D for condition C is covered by

an execution of C if during this execution of C the outcome of each simple

condition in C satis�es the corresponding constraint in D.

For example, consider a condition of the form:

C: B1&(E2 == E3)

where B1 is a boolean expression and E2 and E3 are arithmetic expressions.

Assuming short circuit evaluation of boolean operands, the constraint set for this

condition is f(true,=), (false,=),(true,<),(true,>)g. Otherwise the constraint

set would also include f(false,<), (false,>)g. Coverage of the constraint set

guarantees that all boolean and relational operator errors in C will be detected.

It should be noted that condition testing can only reveal problems with evaluating

conditions and the corresponding results. It cannot detect missing condition con-

structs. In addition to test cases that are used in control structure testing, test cases

should also be designed to detect missing condition checks.

4.4 Functional Testing

In functional program testing, the design of a program is viewed as an abstract

description of its design and requirements speci�cations [DMMP87]. The objective is

to �nd out when the input-output behavior of the program does not agree with its

speci�cations. Functional testing enables us to derive test cases that fully exercise

all functional requirements for a program. Functional testing attempts to �nd the

following errors in a program [Pre92].

� incorrect or missing functions

� interface errors



91

� errors in data structures

� performance errors

� initialization and termination errors

It is reported that functional testing exposed thirty eight of the forty two known errors

in the release of a major software package [DMMP87]. In the following sections, we

present a functional testing technique and a test case design technique that can be

used in conjunction with functional program testing. These fault detection techniques

can be used to detect condition validation errors.

Boundary value analysis (BVA) is a technique for designing test cases to uncover

boundary value errors [Mye79]. It provides guidelines for complete boundary testing

and derives tests from both input and output domains. Boundary value analysis can

be used to derive test cases to detect missing or incorrectly speci�ed limit checks

for system resources, and static-sized data structures. The guidelines provided for

boundary value analysis are as follows:

1. If an input condition speci�es a range bounded by values a and b, test cases

should be designed with values a and b, just above and just below a and b

respectively. In addition, extreme values at both the high and low end should

also be considered to ensure that those conditions are handled properly.

2. If an input condition speci�es a number of values, test cases should be developed

that exercise the minimum and maximum numbers. Values just above and just

below are also tested.

3. Apply guidelines 1 and 2 to output conditions.

4. If internal program data structures have prescribed boundaries, test cases should

be designed to exercise those boundaries.



92

4.4.1 Syntax Testing

Syntax testing is a functional testing technique, in which the object under test is

treated as a black box that can accept certain inputs, reject others and process some.

Syntax checking can be performed as part of the system functional test or as part of

the acceptance test. The primary objective of this technique is not to establish the

correctness of the system under test but to establish that the system is not vulnerable

to ill-formatted input. Beizer [Bei83] has summarized the objective of syntax testing

as follows:

� The element does not fail when subjected to bad inputs.

� The element does not cause another element to fail, even though it does not fail

itself when subjected to bad inputs.

� The element does not corrupt the database when subjected to bad inputs, even

though it does not fail itself.

� The element rejects all bad inputs and accepts all good inputs.

� It performs the correct processing on good inputs.

Some of the errors that can result from improper input validation are outlined

below. Test cases should be designed to check for these errors in the implementation.

� High level syntax errors: Violations in the syntax speci�cation through inap-

propriate combination of �elds.

� Field-syntax errors: Syntax errors associated with a �eld.

� Delimiter errors: Violation of the rules governing the placement and the type

of characters that must appear as separators between �elds. These include:

missing delimiter, wrong delimiter, not a delimiter, and too many delimiters.

� Field-value errors: Errors that occur because of the contents of a �eld. These

include boundary values and excluded values.



93

� Syntax-context errors: There is a possibility of an error when the contents of a

�eld dictate the content of subsequent �elds.

� Field-value correlation errors: The contents of two or more �elds are correlated

by a functional relation between them and there may not be full freedom in

picking their values.

� State-dependency errors: The permissible syntax and/or �eld value is condi-

tional on the state of the system or the routine.

Syntax checking should be performed on at least the following modules as they

handle a major portion of the input that enters the system.

� All user-interface programs including terminal device input routines.

� All communication protocols programs that accept user input.

� Internal interface routines that call supervisor routines.

� Dedicated data validation routines and modules.

4.5 Mutation Testing

Strictly speaking, mutation testing is not a testing technique but a technique

for measuring the adequacy of test data [DMMP87]. A brief overview of mutation

testing from [DM91] is presented here. A more detailed discussion can be found in

[Bud80, DMMP87].

Assume P is the program under test, Pc is the correct version of the program and

is the same as P if P is correct. T is the set of test cases on which P is being tested

and D is the domain of Pc such that P � D. The correctness of P is assumed relative

to some set of speci�cations. Mutation analysis relies on a set F of faults. Given a

program P being tested, each of the faults in F is introduced into P one by one. By

introducing a fault into P, a slightly di�erent program known as the mutant of P is

produced. Mutating P using all the elements of F results in a set M of mutants. A



94

mutantM is killed if its behavior is di�erent from P when M 2 M is executed against

a test case t 2 T. If M cannot be killed by any t 2 T it could be because:

� M is equivalent to P, and will always behave identical to P on all t 2 D

or

� there exists a test case t
0

62 T but t
0

2 D, for which M behaves di�erent than P.

Mutation testing requires knowledge of the implementation language to design the

language dependent mutants.

In the following sections, we present an analysis of the di�erent fault detection

methods outlined earlier and discuss how each method can be used to detect the

di�erent fault types in our classi�cation scheme.

4.6 Condition Validation Errors

In our classi�cation scheme, we identi�ed �ve types of faults that can result when

a condition is not being evaluated properly. The four sub-categories of condition

validation faults are: boundary condition errors, input validation errors, access right

validation errors, origin validation errors, and failure to handle exceptional conditions.

In the following sections we present software testing techniques that can be applied

to detect faults in each category.

4.6.1 Boundary Condition Errors

Boundary condition errors can be detected by using boundary value analysis

(BVA) to design test cases for functional testing of modules. BVA ensures that

the test cases exercise the boundary conditions that can expose boundary condition

errors in the module under test [Mye79].

In addition to functional testing, mutation testing can also be used to detect

boundary conditions by designing appropriate language dependent mutants. For in-

stance Agrawal et al. [ADHe89] describe a C language mutant for checking boundary

conditions in scalar variables. For a statement such as:



95

p = a + b

The mutants that are generated consist of:

p = a + b + 1

and

p = a + b � 1

These mutants are killed if they cause an overow or underow in the program.

Path analysis testing in conjunction with domain analysis can be applied to detect

boundary condition errors. Domain analysis has been studied with two variables and

examined with three variables [JK80, ADJ]. The main disadvantage of domain testing

is that it can only be applied to a small number of variables as the di�culty of selecting

test cases becomes increasingly complex. In an experiment by Howden, path analysis

revealed the existence of one out of three path selection errors [How76].

4.6.2 Input Validation Errors

Input validation errors result when a functional module fails to properly validate

the input it accepts from another module or another process. Failure to validate the

input may cause the module accepting input to fail or it may indirectly cause another

interacting module to fail.

Syntax testing can be used to verify that functional modules that accept input

from other processes or modules do not fail when presented with ill-formatted input.

Syntax testing was described in Section 4.4.1 including test case scenario that should

be tested.

Path analysis and testing can be applied to detect scenarios where a certain ex-

ecution path may be chosen based on the input. In an experiment conducted by

Howden, path testing revealed the existence of nine out of twelve computation errors.

Symbolic testing and static analysis are not viable choices for detecting input

validation errors. Most of the input validation errors result from input received during



96

run-time. This observation does not favor using symbolic or static testing as an

attractive choice to detect input validation errors.

4.6.3 Access Right Validation Errors

Access validation errors result when a subject is allowed to invoke an operation on

an object outside its access domain. In most programming languages these conditions

are coded as conditional constructs and an execution path is chosen based on the

outcome of the evaluated condition. An improperly speci�ed condition can lead to

an incorrect execution path that can invalidate the access right check.

Path analysis can be used to detect errors that result from incorrectly speci�ed

condition constructs. Branch and Relational Operator testing (BRO) is a test case

design techniques that can aid in the design of test cases that can expose access

validation errors.

In programming languages where access validation checks are coded as conditional

constructs, mutation testing can also be used to detect these errors. Mutants can be

designed to provide condition analysis for conditional constructs. In the C program-

ming language, two mutants can be created for an if statement as follows [ADHe89].

For the statements if (e) S the two mutants are:

1. v=e; if (trap on true(v)) S

2. v=e; if (trap on false(v)) S

When trap on true(false) is executed, the mutant is killed if the function ar-

gument value is true(false). If the value if not true(false), then the mutants continue

execution.

The above mentioned mutants only provide partial coverage for the if statement.

To provide complete coverage in the case of statements of the form: if (c) S1 else

S2 the mutants needed to provide complete coverage are:

1. if (c) trap on statement() else S2



97

2. if (c) S1 else trap on statement

These two mutants are equivalent to providing branch coverage and encourage test

cases to be designed such that each branch is executed at least once.

4.6.4 Origin Validation Errors

If a system does not properly authenticate a user or process it may allow unau-

thorized subjects to access the system. Similarly, if a program does not properly

authenticate the shared data or libraries it may be fooled into using modi�ed data

that can lead to a security breach.

It is a di�cult task to verify that a system is not vulnerable to identity compromise

attacks. We are not aware of any fault detection technique that can be employed to

expose origin validation errors. To ensure that a system properly authenticates its

users, we can apply formal methods of veri�cation to ensure that the implementation

adheres to the security requirements and also ensure that the underlying protocol

does not contain any weaknesses that may be exploited.

4.6.5 Failure to Handle Exceptional Conditions

A security breach can be caused if a system fails to handle an exceptional condi-

tion. This can include unanticipated return codes, and failure events.

Static analysis techniques such as inspection of design documents, code walk-

throughs, and formal veri�cation of critical sections can be used to ensure that a

system can gracefully handle any unanticipated event.

Path analysis testing can also be performed on small critical sections of code to

ensure that all possible execution paths are examined. This can reveal problems that

may not have been anticipated by the designers or overlooked because of complexity.



98

4.7 Environment Errors

Enviromental errors are dependent on the operational environment, which makes

them di�cult to detect [Spa90]. It is possible that these vulnerabilities manifest

themselves only when the software is run on a particular machine, under a particular

operating system, or a particular con�guration.

As environment errors are dependent on the run-time conditions, a static analysis

of the code cannot detect these faults. The underlying modules and algorithms may

even be formally demonstrated to be correct yet the program fails to function correctly

on a speci�c set of input. [Spa90].

Spa�ord [Spa90] used mutation testing to uncover problems with integer overow

and underow. Mutation testing can be used to design test cases that exercise a

speci�c set of inputs unique to the run-time environment. Path analysis and testing

can also be applied to sections of the code to ensure that all possible inputs are

examined.

4.8 Synchronization Faults

In our fault classi�cation scheme, synchronization faults are introduced because

of the existence of a timing window between two operations or faults that result from

improper or inadequate serialization of operations. One possible sequence of actions

that may lead to a synchronization fault can be characterized as [KS94]:

1. A process acquires access to an object to perform some operation.

2. The process's notion of the object changes indirectly.

3. The process performs the operation on the object.

Mutation testing can be used to detect synchronization faults in a program. To

detect faults that are introduced by a timing window between two operations, a

trap on executionmutant can be placed between these two operations. The mutant

terminates execution of the program if certain speci�ed conditions are not satis�ed.



99

For instance, a timing window between the access permission checks and the actual

logging in xterm could be exploited to compromise security [CA-93a]. A mutant for

this vulnerability could be designed that terminated execution thus killing the mutant,

if the access checks had been completed. This mutant could be placed between the

access checks and the logging to detect the race condition.

Mutants can also be designed to detect improper serialization operations. Con-

sider a set of n statement that must be executed sequentially to ensure correct op-

eration. We assume that the statements do not contain any instructions that break

the sequential lock-step execution. We can design (n! � 1) mutants that rearrange

the order of the n execution statements. These mutants are killed when the mutated

program produces a di�erent result than the original program.

Other software testing techniques we discussed earlier cannot be applied to detect

synchronization errors. The emphasis of path analysis is to provide coverage that

ensures that all possible execution paths through a program are executed at least

once. This would not detect synchronization errors that depend on relative timing

and serialization of operations. Timing errors and improper serialization are detected

by introducing faults in the code as in mutation testing.

Static analysis is not a viable option because synchronization errors depend on

the runtime conditions.

4.9 Con�guration Errors

Con�guration errors may result when software is adapted to new environments

or from a failure to adhere to the security policy. Con�guration errors comprise of

faults introduced after software has been developed and are faults introduced during

the maintenance phase of the software life-cycle.

A static audit analysis of a system can reveal a majority of con�guration errors.

Among the various software testing techniques discussed, static analysis is the most

e�ective in detecting con�guration errors. The other testing techniques we discussed

focus on detecting coding faults and would not be e�ective in exposing con�guration



100

errors. The static audit of a system can be automated by using static audit tools

such as Cops [FS91] and Tiger [SSH93] that search a system for known avenues of

penetration.

Using Cops as an example, we illustrate the types of con�guration errors that

can be detected. Cops contains the following checks to detect security faults that

led to a compromise of a system [FS91].

dir.check, �le.chk: Check a list of speci�ed directories and �les to ensure that they

are not world-writable. Typically, this list includes /etc/passwd, /.profile,

/etc/rc, /, /bin, /usr/adm, /etc. These checks ensure that critical �les

and directories do not have incorrect permissions that violate a security policy.

pass.chk: This checks for poor password choices. This includes user name, common

words and login identi�ers. This is to prevent brute force attempts to crack

passwords.

group.chk, passwd.chk: These check /etc/passwd, yypasswd, /etc/groups, and

ypgroup for the validity of contents and a variety of known problems including

blank spaces, null passwords, and non-standard �elds.

cron.chk, rc.chk: These checks ensure that an intruder cannot run a program with

root privileges at system startup by checking that �les referenced in /etc/rc*

are not world writable.

dev.chk: This checks that /dev/kmem, /dev/mem, /etc/fstab are not world read-

able or writable. If the permissions are not set correctly, it allows an intruder

to read or write directly from a device.

home.chk, user.chk: These checks ensure that each user's home directory and ini-

tialization �les are not world-writable. These checks are intended to prevent an

individual user's account being sabotaged by an intruder.



101

root.chk: This checks root startup �les for incorrect umask settings and search paths

containing the current directory. This ensure that �les owned by the superuser

are created with the correct permissions.

suid.chk: This program checks for changes in SUID �le status on a system. This

is to prevent a system from several known penetration attacks that result from

information ow problems.

kuang: This is an expert system written by Robert W. Baldwin of MIT. This checks

if a given user's account can be compromised based on a set of rules.

The checks we described above can detect many of the known con�guration errors.

These checks should be updated as new con�guration errors are discovered. The

vulnerability database described in chapter 3 can be used to keep the set of checks

current. As new con�guration errors are added to the database, information about

fault characteristics can be extracted and used to write new checks for the audit tools.

4.10 Summary

Table 4.1 shows a summary of di�erent software testing methods that can be used

to detect di�erent types of faults. We use \+" to denote that the technique should

be e�ective, and has been demonstrated to detect faults with similar characteristics.

A \�" denotes that the technique cannot e�ectively be used. A \?" denotes that the

testing method can be e�ective and a quantitative study may be performed as part

of the future work.



102

Errors Functional Path Static Mutation

Testing Analysis Analysis Testing

Boundary condition + ? ? +

Input validation + + � �

Access right � + ? ?

Origin validation � � + �

Failure to

handle exceptions ? + + ?

Environment ? + � +

Race condition � � � +

Serialization � � � +

Con�guration � � + �

Table 4.1 Comparison of Di�erent Software Testing Methods



103

5. CONCLUSIONS AND FUTURE WORK

The main contribution of this thesis is the security fault classi�cation scheme for

the Unix operating system. Our classi�cation scheme allows us to categorize distinctly

each security fault according to the speci�ed criteria. This distinguishes our taxonomy

from other classi�cation schemes that do not explicitly specify the membership criteria

for the faults. To demonstrate the applicability of our classi�cation scheme we used

it as a basis for the design of a vulnerability database. The database was used to

store security faults found in di�erent versions of Unix. This database can be used

in conjunction with an intrusion detection system, or a static audit tool to search for

known avenues of penetration. Furthermore, we used the fault categories to identify

software testing methods. These methods can be applied during the test phase of the

software life-cycle or can be used during a penetration analysis.

Traditionally, testing focused on proving the functional correctness of software.

Little or no importance was given to security testing. Personnel who maintained a

system were also responsible for its security. Some sites used penetration analysis to

uncover existing security vulnerabilities. But a majority of computer sites could not

a�ord a comprehensive penetration analysis and vulnerabilities went unnoticed until

they had led to a security compromise.

Coding faults can be detected by adequate testing. Thus, security compromises

that resulted by exploiting such faults could have been prevented if the faults were

detected and �xed during the development cycle. To develop more reliable systems,

more emphasis should be placed on security testing and system testing methods

should be designed to detect security faults.

As part of the future work, we may extend our classi�cation scheme to other

modern operating system. Many modern systems are based on a software architecture



104

that is di�erent from Unix's structure. These include micro-kernels, object-oriented,

and distributed operating systems. The criteria used in our taxonomy do not rely

on implementation details and are designed to encompass general characteristics of a

fault. Also, our existing categories can be extended to include faults that cannot be

classi�ed into existing categories. We believe that these factors would enable us to

extend our classi�cation scheme to include faults in various operating systems.

Another area for future work may be to evaluate the software testing methods on

di�erent operating systems. This would provide quantitative data on the e�ectiveness

of each method. These methods may also be used to develop a test-suite that can be

used to measure the secure-worthiness of di�erent systems. Using this suite, it may

be possible to develop a set of metrics that can be used for security certi�cation of

di�erent systems.



BIBLIOGRAPHY



105

BIBLIOGRAPHY

[A+76] R.P. Abbott et al. Security Analysis and Enhancements of Computer
Operating Systems. Technical Report NBSIR 76-1041, Institute for Com-
puter Science and Technology, National Bureau of Standards, 1976.

[ADHe89] H. Agrawal, R. DeMillo, R. Hathaway, and et al. Design of Mutant Op-
erators for the C Programming Language. Technical Report SERC-TR-
41-P, Software Engineering Research Center, Purdue University, 1989.

[ADJ] DeMillo R. A, Hocking E. D, and Meritt M. J. A Comparison of Some
Reliable Test Data Generation Procedures. Technical report, Georgia
Institue of Technology.

[AMP76] C.R. Attansio, P. W. Markstein, and R. J. Phillips. Penetrating an oper-
ating system: a study of VM/370 integrity. IBM Systems Journal, pages
102{116, 1976.

[And72] J P Anderson. Computer security technology planning study. Technical
Report ESD-TR-73-51, USAF Electronic Systems Div., 1972.

[Bei83] Boris Beizer. Software Testing Techniques. Electrical Engineer-
ing/Computer Science and Engineering Series. Van Nostrand Reinhold,
1983.

[BH78] R. Bibsey and D. Hollingworth. Protection analysis project �nal report.
Technical Report ISI-RR-78-13, Institue of Information Sciences, Univer-
sity of Southern California, 1978.

[Bis86] Matt Bishop. Analyzing the Security of an Existing Computer System.
IEEE Fall Joint Computer Conference, November 1986.

[BP84] V. Basili and Barry T. Perricone. Software Errors and Complexity: An
Empirical Investigation. Communications of the ACM, 27(1):42{51, Jan-
uary 1984.

[BPC75] Richard Bibsey, Gerald Popek, and Jim Carlstead. Inconsistency of a
single data value over time. Technical report, Information Sciences Insti-
tute,University of Southern California, December 1975.



106

[BR87] Victor R. Baisli and H. Dieter Rombach. Tailoring the Software Process
to Project Goals and Environments. In Proceedings of the 9th Interna-
tional Conference on Software Engineering, pages 345{357. IEEE Press,
1987.

[BS88] Lubomir Bic and Alan Shaw. The Logical Design of Operating Systems.
Prentice Hall, 1988.

[Bud80] T.A. Budd. Mutation Analysis of Program Test Data. PhD thesis, Yale
University, May 1980.

[CA-89] CERT advisory CA-89:06. Computer Emergency Response Team Advi-
sory, 1989.

[CA-90a] CERT advisory CA-90:11. Computer Emergency Response Team Advi-
sory, 1990.

[CA-90b] CERT advisory CA-90:12. Computer Emergency Response Team Advi-
sory, 1990.

[CA-91a] CERT advisory CA-91:18. Computer Emergency Response Team Advi-
sory, 1991.

[CA-91b] CERT advisory CA-91:19. Computer Emergency Response Team Advi-
sory, 1991.

[CA-93a] CERT advisory CA-93:17. Computer Emergency Response Team Advi-
sory, 1993.

[CA-93b] CERT advisory CA-93:19. Computer Emergency Response Team Advi-
sory, 1993.

[CA-94] CERT advisory CA-94:02. Computer Emergency Response Team Advi-
sory, 1994.

[Car78] Jim Carlstead. Serialization: Protection errors in operating systems.
Technical report, Information Sciences Institute, University of Southern
California, April 1978.

[CBP75] Jim Carlstead, Richard Bibsey II, and Gerald Popek. Pattern-directed
protection evaluation. Technical report, Information Sciences In-
stitue,University of Southern California, June 1975.

[Com88] Douglas E. Comer. Internetworking with TCP/IP. Prentice Hall, 1988.

[CPRZ89] L. A. Clarke, A. Podgruski, D. J. Richardson, and S. Zeil. A Formal
Evaluation of Data Flow Path Selection Criteria. IEEE Transactions on
Software Engineering, 15(11):1318{1332, November 1989.



107

[Den83] Dorothy Denning. Cryptography and Data Security. Addison-Wessley
Publishing Company, 1983.

[DGM78] A. Dniestrowski, J. M. Guillaume, and R. Mortier. Software Engineering
in Avionics Applications. In Proceedings of the 3rd International Con-
ference on Software Engineering, pages 124{131. IEEE Press, 1978.

[Dis85] A. V. Discolo. 4.2 BSD Unix Security. Technical report, University of
California - Santa Barbara, 1985.

[DM91] Richard A. DeMillo and Aditya P. Mathur. On the Use of Software
Artifacts to Evaluate the E�ectiveness of Mutation Analysis for Detecting
Errors in Production Software. Technical report, Software Engineering
Research Center, Purdue University , SERC-TR-92-P, March 1991.

[DMMP87] Richard A. DeMillo, W. Michael McCracken, R. J. Martin, and John F.
Passa�ume. Software Testing and Evaluation. The Benjamin/Cummings
Publishing Company Inc., 1987.

[EN89] R. Elmasri and S. B. Navathe. Fundamentals of Database Systems. The
Benjamin/Cummings Publishing Comany Inc., 1989.

[End75] A. Endres. An analysis of errors and their causes in system programs.
IEEE Transactions on Software Engineering, SE-1:140{149, 1975.

[FS91] Daniel Farmer and Eugene H. Spa�ord. The COPS Security Checker
System. Technical Report CSD-TR-993, Software Engineering Research
Center, Purdue University, September 1991.

[GJM91] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of
Software Engineering. Prentice Hall, 1991.

[Gla81] Robert L. Glass. Persistent software errors. Transactions on Software
Engineering, SE-7(2):162{168, March 1981.

[GS91] Simson Gar�nkel and Eugene Spa�ord. Practical Unix Security. O'Reily
and Associates, 1991.

[H+80] B. Hebbard et al. A penetration analysis of the Michigan terminal sys-
tem. ACM SIGOPS Operating System Review, 14(1):7{20, 1980.

[Hal90] Anthony Hall. Seven myths of formal methods. IEEE Software, pages
11{20, September 1990.

[HB76] Dennis Hollingworth and Richard Bibsey II. Allocation/deallocation
residuals. Technical report, Information Sciences Institute, University
of Southern California, June 1976.



108

[How76] W. E. Howden. Reliability of the Path Analysis Testing Strategy. IEEE
Transactions on Software Engineering, SE-2(3):208{214, 1976.

[How78] W. E. Howden. An Evaluation of the E�ectiveness of Symbolic Testing.
Software Practice and Principle, 8(4):381{397, July-August 1978.

[How81a] William E. Howden. A survey of dynamic analysis methods. Tutorial:
Software Testing & Validation, pages 209{231, 1981.

[How81b] William E. Howden. A survey of static analysis methods. Tutorial:
Software Testing & Validation, pages 101{115, 1981.

[HSP] David K. Hess, David R. Sa�ord, and Udo W. Pooch. A Unix Network
Protocol Security Study: Network Information Service. Technical report,
Texas A & M University.

[IEE90] IEEE. ANSI/IEEE Standard Glossary of Software Engineering Termi-
nology. IEEE Press, 1990.

[ISV95] Dave Icove, Karl Seger, and William VonStorch. Computer Crime: A
Crime�ghter's Handbook. O'Reilly & Associates, Inc., 1995.

[JK80] White L. J and Cohen E. K. A Domain Strategy for Computer Program
Testing. IEEE Transactions on Software Engineering, 6(3):247{257, May
1980.

[Knu89] D.E. Knuth. The Errors of TEX. Software Practice and Experience,
19(7):607{685, 1989.

[KS94] Sandeep Kumar and Eugene Spa�ord. A Pattern Matching Model for
Misuse Intrusion Detection. In 17th National Computer Security Confer-
ence, 1994.

[L+93] Carl Landwher et al. A taxonomy of computer program security aws.
Technical report, Naval Research Laboratory, November 1993.

[Lin75] Richard Linde. Operating system penetration. In National Computer
Conference, pages 361{368, 1975.

[Lip79] M. Lipow. Prediction of Software Failures. Journal of Systems and Soft-
ware, 1(1):71{75, 1979.

[Mar90] Brian Marick. A survey of software fault surveys. Technical Report
UIUCDCS-R-90-1651, University of Illinois at Urbana-Champaign, De-
cember 1990.

[MB77] R. W. Motley and W. D. Brooks. Statistical Prediction of Programming
Errors. Technical Report RADC-TR-77-175, 1977.



109

[MD79] E.J. McCauley and P.J. Drongowski. KSOS - The design of a secure
operating system. National Computer Conference, 1979.

[Mye76] Glenford J. Myers. Software Reliability. Wiley-Interscience, 1976.

[Mye79] G. Myers. The Art of Software Testing. Wiley, 1979.

[Ous94] John K. Ousterhout. Tcl and Tk Toolkit. Addison Wesley Publishing
Company, 1994.

[OW84] Thomas J. Ostrand and Elaine J. Weyuker. Collecting and Categorizing
Software Error Data in an Industrial Environment. Journal of Systems
and Software, 4:289{300, 1984.

[PAFB82] D. Potier, J.L. Albin, R. Ferrol, and A. Bilodeau. Experiments with
Computer Software Complexity and Reliability. In Proceedings of the 6th
International Conference on Software Engineering, pages 94{103. IEEE
Press, 1982.

[PKKe79] G. J. Popek, M. Kampe, C. S Kline, and et al. UCLA Secure Unix. In
Proceedings of the National Computer Conference, pages 335{364, 1979.

[Pre92] Roger Pressman. Software Engineering: A Practitioner's Approach. Mc-
Graw Hill, Inc., Third edition, 1992.

[RDB75] R. J. Rubey, J. A. Dana, and P. W. Biche. Quantitative aspects of
software validation. IEEE Transactions on Software Engineering, SE-
1:150{155, 1975.

[Rub75] Raymond J. Rubey. Quantitative Aspects of Software Validation. SIG-
PLAN Notices, SE-5(3):276{286, May 1975.

[SB75] M.L. Schooman and M.I. Bolsky. Types, Distribution, and Test and
Correction Times for Programming Errors. In Proceedings of the 1975
International Conference on Reliable Software, 1975.

[Sch75] W. L. Schiller. The Design and Sepci�cations of a Security Kernel for the
PDP 11/45. Technical Report ESD-TR75-69, THE MITRE Corporation,
1975.

[Sch79a] R. R. Schell. Computer Security: the Achilles Heel of the Electronic Air
Force? Air University Review, 30(2):16{33, 1979.

[Sch79b] N. F. Schneidewind. Software metrics for aiding program development
debugging. In National Computer Conference, 1979.

[Sch93] Christoph Schuba. Addressing Weaknesses in the Domain Name System
Protocol. Master's thesis, Purdue University, 1993.



110

[SCS77] M. D. Schroeder, D. D. Clark, and J. H. Saltzer. The MUTLICS Kernel
Design Project. ACM Operating Systems Review, 11(5):43{56, 1977.

[Spa89] Eugene H. Spa�ord. Crisis and Aftermath. Communications of the ACM,
32(6):678{687, June 1989.

[Spa90] Eugene H. Spa�ord. Extending Mutation Testing to Find Environmental
Bugs. Software Practice and Principle, 20(2):181{189, Feb 1990.

[SSH93] David R. Sa�ord, Douglas Lee Schales, and David K. Hess. The TAMU
security package. In Edward Dehart, editor, Proceedings of the Security
IV Conference, pages 91{118, 1993.

[Tai89] K. C. Tai. What to do beyond branch testing. ACM Software Engineer-
ing Notes, 14(2):58{61, April 1989.

[WB85] David M. Weiss and Victor R. Basili. Evaluating Software development
by Analysis of Changes: Some Data from the Software Engineering Lab-
oratory. IEEE Transactions on Software Engineering, SE-11(2):3{11,
February 1985.

[web88] Webster's New World Dictionary of Computer Terms. Webster's New
World, New York, 1988.

[Wil81] A. L. Wilkinson et al. A penetration analysis of a Burroughs large system.
ACM SIGOPS Operating System Review, 15(1):14{25, 1981.

[Wit90] Carol Withrow. Error Density and Size in Ada Software. IEEE Software,
7(1):26{30, January 1990.

[Y+85] Shen Yu et al. Identifying Error-Prone Software - An Empirical Study.
Transactions on Software Engineering, SE-11(4):317{323, April 1985.

[YT91] Michal Young and Richard N. Taylor. Rethinking the Taxonomy of Fault
Detection Techniques. Technical report, Software Engineering Research
Center, Purdue University, September 1991.

[Zwa92] Vladmir Zwass. Management Information Systems. Dubuque, Wm. C.
Brown, 1992.



APPENDICES



111

Appendix A:
Description of Software Fault Studies

[BR87] Basili and Rombach report on software faults in projects characterized by

high code reuse, established processes, and high turnover among programmers.

[Gla81] Glass surveyed 100 faults each from two software systems for military air-

craft. The �rst was coded in 500,000 instructions and was built by 150 pro-

grammers. The second system had 100,000 instructions and was built by 30

programmers. All the faults were reported after delivery of the software.

[DGM78] Dniestrowski et al. describe a digital ight control/avionics real time sys-

tem. The system contained 10,000 lines of code written in LTR (a special high

level language) and assembly.

[OW84] Ostrand and Weyuker report on 173 faults discovered during the develop-

ment and system testing of an interactive special-purpose editor coded in 10,000

lines of a high-level language and 1000 lines of assembly.

[Rub75] Rubey reports on faults found from over a dozen validation e�orts. The

system included in the study were small commercial real-time control programs.

[BP84] Basili and Perricone discuss faults in a 90,000 lines Fortran project. The

system was general purpose program for satellite planning studies. It was char-

acterized by rapidly changing requirements and by code and design reuse.

[Y+85] Shen et al. describe faults discovered after release of software in three di�er-

ent programs: a metric calculation tool written in Pascal, a compiler in PL/S,

and a database system written primarily in assembly.



112

Appendix B:
A Taxonomy of Unix Vulnerabilities

1. Synopsis: lpr(1) can be used to delete or create any �le on the system. lpr
-s allows users to create symbolic links to lpd's spool directory. After
1000 invocations, lpr will reuse �les in the spool directory, and follow the
previously installed link.

Source: 8lgm advisory

Operating System: SunOS 4.1.1 or earlier, BSD 4.3, BSD NET/2 derived
systems, A/UX 2.01

Classi�cation: Condition validation error: check for origin.

2. Synopsis: If an access list of hosts in /etc/exports is longer than 256 charac-
ters, or if the cached list of netgroups exceeds the cache capacity then the
�lesystem can be mounted by any user.

Source: CERT advisory CA-94:02

Operating System: SunOS on Sun3 and Sun4

Classi�cation: Condition validation error: check for limit.

3. Synopsis: In systems that used delivermail(8) the mail message could be
appended to the �le by sending mail to the �lename instead of a user. This
could be used to create an arbitrary entry in /etc/passwd.

Source: See [Bis86].

Operating System: BSD systems that used delivermail.

Classi�cation: Condition validation error: check for origin (destination).

4. Synopsis: It is possible to lock the password �le and prevent any user from
changing his/her password.

Source: security distribution list

Operating System: 4.2 BSD and derived systems

Classi�cation: Condition validation error: check for limit.

5. Synopsis: rcp can be exploited by any trusted host in /etc/hosts.equiv or
./rhosts.

Source: CERT advisory CA-89:07

Operating System: SunOS4.x

Classi�cation: Condition validation error: check for origin.

6. Synopsis: Any user can gain root access to a machine running HP's NIS
ypbind.



113

Source: CERT advisory CA-93:01

Operating System: Any system running HP's NIS ypbind.

Classi�cation: Condition validation error: check for origin.

7. Synopsis: A system running NIS/RPC/UDP can be penetrated by generating
a fake /etc/password entry in response to a NIS client request.

Source: See [HSP].

Operating System: Systems running NIS/RPC/UDP.

Classi�cation: Condition validation error: check for origin.

8. Synopsis: A vulnerability in Majordomo software allows users access to the
system without authentication.

Source: CERT advisory CA-94:11

Operating System: Any system running Majordomo up to and including ver-
sion 1.91.

Classi�cation: Condition validation error: check for origin.

9. Synopsis: /usr/etc/modload and $OPENWINDOWS/bin/loadmodule can be ex-
ploited to execute a user's program using the e�ective id of root.

Source: CERT advisory CA-93:18

Operating System: SunOS 4.1.1, 4.1.2, 4.1.3(c)

Classi�cation: Condition validation error: check for access rights.

10. Synopsis: TIOCCONS can be used to re-direct console input/output away
from console regardless of the permissions on the terminal device.

Source: CERT advisory CA-90:12

Operating System: SunOS

Classi�cation: Condition validation error: check for access rights.

11. Synopsis: Implementation of /usr/sys/sys/kern exec.c takes the text and
data sizes in the header of the �le being exec'd to be true. This can cause a
security breach when a program with a large data-size causes a coredump.

Source: Security distribution list.

Operating System: BSD 4.2

Classi�cation: Condition validation error: check for limits.

12. Synopsis: The password �le reading routines use fgets() to read a string of
input. These routines do not properly check if the last line was completely
read. This can be used to create a bogus entry in the password �le.

Source: Security distribution list.



114

Operating System: BSD 4.3

Classi�cation: Condition validation error: check for input syntax.

13. Synopsis: Setting the stack size on a Sun 386 causes a coredump and crashes
the system. The problem occurs because the input is parsed incorrectly.

Source: Security distribution list.

Operating System: Sun 386 systems.

Classi�cation: Condition validation error: check for input.

14. Synopsis: The xterm emulator de�nes some escape sequences that can be
sent to a user's terminal via a mail message. This can be used to invoke
arbitrary commands on another user's terminal.

Source: Security distribution list.

Operating System: Systems running X windows version 11 release 3 and 4.

Classi�cation: Environment error: interaction between functionally correct
modules

15. Synopsis: rdist uses popen(3) to execute sendmail(3) as root. It can be
made to execute arbitrary programs as root.

Source: 8lgm advisory

Operating System: SunOS 4.1.2 or earlier, A/UX 2.0,1, BSD NET/2Derived
systems

Classi�cation: Condition validation: check for origin of subject(program).

16. Synopsis: In version 6 Unix, if su could not open the password �le, it would
create a shell with the e�ective and real gid of root and grant root privileges
to the user.

Source: Unreferenced source.

Operating System: Unix version 6.

Classi�cation: Condition validation: check for limits.

17. Synopsis: A vulnerability in NCSA HTTP daemon allows remote users access
to the account under which httpd is running.

Source: CERT advisory CA-95:04

Operating System: Systems running NCSA HTTPD version up to and includ-
ing version 1.3.

Classi�cation: Condition validation: check for limit.

18. Synopsis: In the code for binmail in the function sendrmt() there is a loop
that copies the address up to the �rst "!" or NULL. If the input string is
long enough to overwrite the stack, it will be executed when the procedure
returns using the address stored on the stack.



115

Source: Unreferenced source.

Operating System: Information not available.

Classi�cation: Condition validation: check for limits.

19. Synopsis: The ioctl system call can be combined with at to take over a user's
terminal and breach security.

Source: Security distribution list.

Operating System: SunOS 4.0

Classi�cation: Synchronization error: race condition.

20. Synopsis: If multiple users change their passwords simultaneously, the yellow
pages password map �le is updated concurrently with no �le locking. This
corrupts the yellow page map �le.

Source: Security distribution list.

Operating System: SunOS 4.0.3

Classi�cation: Synchronization error: improper serialization of operations.

21. Synopsis: A race condition in mkdir exists that can be exploited to gain root
access.

Source: Security distribution list.

Operating System: Most BSD derived systems.

Classi�cation: Synchronization error: race condition.

22. Synopsis: A vulnerability exists in the site exec feature of ftpd that allows
any local or remote user to gain root access.

Source: CERT advisory CA-94:08

Operating System: Systems running wuarchive version 2.0-2.3

Classi�cation: Con�guration error: utility installed with incorrect setup.

23. Synopsis: A vulnerability in the logging function of xterm allows local users
to create new �les or modify any existing �les.

Source: CERT advisory CA-93:15

Operating System: Systems running X window system version 4, and version
5.

Classi�cation: Synchronization error: race condition

24. Synopsis: In SunOS 4.0 /etc/utmp is writable by default. This can be ex-
ploited by using programs such as rwall to overwrite the password �le.

Source: Security distribution list.



116

Operating System: SunOS 4.0

Classi�cation: Condition validation error: input validation error

25. Synopsis: yypasswd �le is world writable. This allows any user to edit and
create new entries in the �le.

Source: Security distribution list.

Operating System: SunOS 4.0.3

Classi�cation: Con�guration error: secondary storage object (system database
�le) installed with incorrect permissions.

26. Synopsis: tftpd is installed on some machines that allows intruders access to
the system.

Source: CERT advisory CA-89:05

Operating System: DEC/Ultrix 3.0

Classi�cation: Condition validation error: check for origin

27. Synopsis: Any user can create a setuid program by using a -P option in
login(1) and breach security.

Source: Security distribution list.

Operating System: Ultrix 3.0

Classi�cation: Origin validation error: check for origin of subject

28. Synopsis: If uucp is mode 777, it can be exploited to gain root privileges.

Source: Security distribution list.

Operating System: Information not available.

Classi�cation: Con�guration error: program installed with incorrect permis-
sions.

29. Synopsis: If rexd (RPC Remote program execution) daemon is enabled, any-
one on the Internet can get access to the machine running rexd.

Source: CERT advisory CA-92:05

Operating System: Aix 3.1, Aix 3.2

Classi�cation: Condition validation error: check for origin

30. Synopsis: If sendmail is installed with -d it can be exploited by unauthorized
users to gain access to a system.

Source: CERT advisory CA-94:12. Also see [Spa89].

Operating System: Systems running sendmail version 8.6.7.

Classi�cation: Con�guration error: program installed with incorrect setup
parameters.



117

31. Synopsis: When installing DECnet Internet software, it is necessary to create
a guest account on the host. By default this account has /bin/csh as its
default shell. As the guest account has a valid shell, it can be exploited to
gain root privileges.

Source: CERT advisory CA-91:17

Operating System: Ultrix 4.0,1,2

Classi�cation: Con�guration error: utility installed with incorrect setup.

32. Synopsis: The queuing system on AIX includes a batch queue bsh that is
turned on by default in /etc/qconfig. This can be exploited by remote
and local users to gain root privileges.

Source: CERT advisory CA-94:10

Operating System: AIX version 3 and earlier

Classi�cation: Con�guration error: utility installed with incorrect setup pa-
rameters.

33. Synopsis: A vulnerability in the performance tools in AIX allows local users
to gain root privileges. The solution suggested is to remove the setuid bit.

Source: CERT advisory CA-94:03

Operating System: AIX 3.2.5

Classi�cation: Con�guration error: secondary object (utility) installed with
incorrect permissions.

34. Synopsis: If fsck(8) fails during system bootup, a privileged shell is run on
the console. This can allow users with physical access to the system to
gain unrestricted privileges.

Source: CERT advisory CA-93:19

Operating System: Solaris 2.x

Classi�cation: Condition validation: failure to handle exceptions

35. Synopsis: A user can create an interactive shell with the userid of a setuid
shell script by creating a link to it with the name "-i".

Source: Unreferenced source.

Operating System: SunOS 3.2 and earlier

Classi�cation: Environment error: interaction between functionally correct
modules

36. Synopsis: Any user could bypass authentication process by supplying a -n as
an argument to the login program.

Source: Unreferenced source.



118

Operating System: Sun 386i based systems.

Classi�cation: Condition validation error: check for origin

37. Synopsis: sendmail could be exploited to read any �le on the system regardless
of the permissions by specifying it as the con�guration �le to sendmail.

Source: See [Dis85].

Operating System: BSD 4.2.

Classi�cation: Condition validation error: check for origin

38. Synopsis: A vulnerability exists on IRIX systems that can be exploited by users
to gain root privileges. The vulnerability is exploited using /usr/sbin/fmt.
The suggested solution is to change permission on fmt 755 and ownership
to root.

Source: CERT advisory CA-91:14

Operating System: SGI IRIX systems.

Classi�cation: Con�guration error: utility installed with incorrect permissions.

39. Synopsis: A writable setuid �le exists in Masscomp RTU that can be exploited
to gain root privileges.

Source: Security distribution list

Operating System: Masscomp RTU | a system V derived kernel.

Classi�cation: Con�guration error: secondary storage object installed with
incorrect permissions.

40. Synopsis: Mail programs on Unix systems change the uid of the mail �le to
that of the recipient. If the mail program does not clear the setuid bits of
the �le and the directory is writable security can be breached.

Source: See [Bis86].

Operating System: Information not available.

Classi�cation: Con�guration error: secondary storage (mail directory) object
installed with incorrect permissions.

41. Synopsis: The restore command was setuid which could be exploited to
breach security.

Source: CERT advisory CA-89:02.

Operating System: SunOS 4.0.x

Classi�cation: Con�guration error: utility installed with incorrect permissions.

42. Synopsis: Some systems were shipped with accounts that did not have pass-
words.



119

Source: CERT advisory CA-90:03

Operating System: Unisys U5000

Classi�cation: Con�guration error: utility set with incorrect setup parameters.

43. Synopsis: A vulnerability in in.telnetd allowed the possibility of capturing
passwords by reading the terminal output.

Source: CERT advisory CA-91:02a

Operating System: SunOS 4.1 and SunOS 4.1.1

Classi�cation: Condition validation: check for access rights.

44. Synopsis: /usr/bin/chroot was improperly installed and could be exploited
to gain root privileges.

Source: CERT advisory CA-91:05

Operating System: Ultrix 4.0,1

Classi�cation: Con�guration error: utility installed with incorrect permissions.

45. Synopsis: Local users could gain unauthorized privileges if a setuid program
changed its real and e�ective user ids to be the same and subsequently
caused a dynamically-linked program to be exec'd.

Source: CERT advisory CA-92:11

Operating System: SunOS 4.0 and higher.

Classi�cation: Condition validation: check for origin.

46. Synopsis: Default permission on a number of �les and directories were set
incorrectly. For instance, �les owned by root were owned by bin.

Source: CERT advisory CA-93:03

Operating System: SunOS 4.1, 4.1.f1,2,3g.

Classi�cation: Con�guration error: secondary storage object has incorrect
permissions.

47. Synopsis: As part of the installation, the system creates /usr/release/bin
and installs two setuid root �les: makeinstall and winstall. These could
be exploited to gain root access.

Source: CERT advisory CA-91:07

Operating System: SunOS 4.1, SunOS 4.0.3, SunOS 4.1.1

Classi�cation: Con�guration error: utility installed with incorrect permissions.

48. Synopsis: /bin/login is improperly installed and may be exploited to gain
root privileges.

Source: CERT advisory CA-91:08



120

Operating System: System V release 4.

Classi�cation: Con�guration error: utility installed with incorrect setup pa-
rameters.

49. Synopsis: In some SunOS version the root directory was writable. This could
result in a user being able to overwrite or destroy sensitive �les.

Source: Security distribution list.

Operating System SunOS 4.0

Classi�cation: Con�guration error: secondary storage object installed with
incorrect permissions.


